Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33497611

ABSTRACT

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Helicases/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Tuberous Sclerosis/metabolism , Amino Acid Sequence , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , DNA Helicases/chemistry , Evolution, Molecular , Female , Humans , Insulin/pharmacology , Lysosomal Membrane Proteins/metabolism , Lysosomes/drug effects , Neurons/drug effects , Neurons/metabolism , Phenotype , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , Rats, Wistar , Signal Transduction/drug effects , Zebrafish/metabolism
2.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32818467

ABSTRACT

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Subject(s)
L-Amino Acid Oxidase/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Adult , Aged , Animals , Cell Line , Cell Line, Tumor , Disease Progression , Female , Glioma/immunology , Glioma/metabolism , Glioma/therapy , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , Rats
3.
Front Oncol ; 9: 962, 2019.
Article in English | MEDLINE | ID: mdl-31612110

ABSTRACT

Purpose: Evidence from preclinical studies and trials in healthy volunteers suggests that exercise may modulate the levels of tryptophan (TRP) metabolites along the kynurenine (KYN) pathway. As KYN and downstream KYN metabolites are known to promote cancer progression by inhibiting anti-tumor immune responses and by promoting the motility of cancer cells, we investigated if resistance exercise can also control the levels of KYN pathway metabolites in breast cancer patients undergoing radiotherapy (NCT01468766). Patients and Methods: Chemotherapy-naïve breast cancer patients (n = 96) were either randomized to an exercise/intervention group (IG) or a control group (CG). The IG participated in a 12-week supervised progressive resistance exercise program twice a week, whereas the CG received a supervised relaxation program. Serum levels of TRP and KYN as well as urine levels of kynurenic acid (KYNA) and neurotoxic quinolinic acid (QUINA) were assessed before (t0), after radiotherapy, and mid-term of the exercise intervention (t1) and after the exercise intervention (t2). Additionally, 24 healthy women (HIG) participated in the exercise program to investigate potential differences in its effects on KYN metabolites in comparison to the breast cancer patients. Results: At baseline (t0) the breast cancer patients showed a significantly elevated serum KYN/TRP ratio and urine QUINA/KYNA ratio, as well as increased urine QUINA levels in comparison to the healthy women. In response to exercise the healthy women and the breast cancer patients differed significantly in the levels of urine QUINA and the QUINA/KYNA ratio. Most importantly, serum KYN levels and the KYN/TRP ratio were significantly reduced in exercising patients (IG) compared to non-exercising patients (CG) both at t1 and t2. Conclusion: Resistance exercise may represent a potent non-pharmacological avenue to counteract an activation of the KYN pathway in breast cancer patients undergoing radiotherapy.

4.
Oncoimmunology ; 7(12): e1486353, 2018.
Article in English | MEDLINE | ID: mdl-30524887

ABSTRACT

Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.

5.
Oncoimmunology ; 6(2): e1274477, 2017.
Article in English | MEDLINE | ID: mdl-28344890

ABSTRACT

Kynurenine formation by tryptophan-catabolic indoleamine-2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune evasion and inhibition of IDO1 is efficacious in preclinical models of breast cancer. As the response of breast cancer to immune checkpoint inhibitors may be limited, a better understanding of the expression of additional targetable immunomodulatory pathways is of importance. We therefore investigated the regulation of IDO1 expression in different breast cancer subtypes. We identified estrogen receptor α (ER) as a negative regulator of IDO1 expression. Serum kynurenine levels as well as tumoral IDO1 expression were lower in patients with ER-positive than ER-negative tumors and an inverse relationship between IDO1 and estrogen receptor mRNA was observed across 14 breast cancer data sets. Analysis of whole genome bisulfite sequencing, 450k, MassARRAY and pyrosequencing data revealed that the IDO1 promoter is hypermethylated in ER-positive compared with ER-negative breast cancer. Reduced induction of IDO1 was also observed in human ER-positive breast cancer cell lines. IDO1 induction was enhanced upon DNA demethylation in ER-positive but not in ER-negative cells and methylation of an IDO1 promoter construct reduced IDO1 expression, suggesting that enhanced methylation of the IDO1 promoter suppresses IDO1 in ER-positive breast cancer. The association of ER overexpression with epigenetic downregulation of IDO1 appears to be a particular feature of breast cancer as IDO1 was not suppressed by IDO1 promoter hypermethylation in the presence of high ER expression in cervical or endometrial cancer.

6.
J Med Virol ; 69(2): 267-72, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12683417

ABSTRACT

Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species including humans and is a potential contaminant in MLV vector preparations for human gene transfer studies. Because MLV replication proceeds through an RNA genome that is generated under the control of viral enhancer and promoter elements, vectors were developed that delete such elements during transduction to reduce the generation of replication-competent virus. It was shown recently that replication of amphotropic MLV in certain human cells is possible without the 75 bp transcription enhancers. It is now demonstrated that enhancer-independent replication requires functional elements within U3 and is repressed by an extended deletion in the U3 region comprising enhancers, promoter and flanking sequences. It is concluded that the transcriptional inactivation of amphotropic MLV in human cells requires the combined deletion of enhancers and of additional elements in U3.


Subject(s)
Gene Expression Regulation, Viral , Leukemia Virus, Murine/physiology , Transcription, Genetic , Virus Replication , Animals , Base Sequence , Enhancer Elements, Genetic , Gene Deletion , Humans , Leukemia Virus, Murine/genetics , Mice , Molecular Sequence Data , Promoter Regions, Genetic , Tumor Cells, Cultured
7.
J Med Virol ; 68(2): 278-84, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12210420

ABSTRACT

Amphotropic murine leukemia virus (MLV) replicates in cells from various mammalian species including humans and is a potential contaminant in MLV vector preparations for human gene transfer studies. In general, MLV replication depends on the expression of viral genes under the control of 75 bp enhancer elements in the long terminal repeat. However, in specific human fibrosarcoma and lymphoma lines replication of amphotropic MLV is possible without these enhancers. Fibrosarcomas are malignant tumors of fibroblast origin. To test the replication potential of intact and enhancerless amphotropic MLV in untransformed cells, infection studies with these viruses were carried out in three types of primary human fibroblasts. Replication of amphotropic MLV is observed in two of three tested fibroblast strains. None of these primary human fibroblasts is permissive for enhancer-deficient MLV, suggesting that replication of this virus may be limited to transformed cells.


Subject(s)
Fibroblasts/virology , Fibrosarcoma/virology , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/physiology , Animals , Base Sequence , Cells, Cultured , DNA, Viral/genetics , Enhancer Elements, Genetic , Humans , Leukemia Virus, Murine/pathogenicity , Mice , RNA, Viral/genetics , RNA, Viral/isolation & purification , Tumor Cells, Cultured , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL