Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biomol NMR ; 72(1-2): 1-10, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30066206

ABSTRACT

Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between ß-strands performing an inward movement and that this movement also affects the entire ß-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.


Subject(s)
Carrier Proteins/physiology , Protein Folding , Saccharomyces cerevisiae Proteins/physiology , Endoplasmic Reticulum-Associated Degradation/physiology , Glycoproteins/chemistry , Lectins/chemistry , Oligosaccharides/chemistry , Polysaccharides , Protein Binding , Protein Conformation , Substrate Specificity
2.
Mol Biol Cell ; 26(2): 185-94, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25428985

ABSTRACT

Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Membrane Glycoproteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Endoplasmic Reticulum/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Immunoblotting , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Folding , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL