Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36216502

ABSTRACT

The surgical redirection of efferent neural input to a denervated muscle via a nerve transfer can reestablish neuromuscular control after nerve injuries. The role of autonomic nerve fibers during the process of muscular reinnervation remains largely unknown. Here, we investigated the neurobiological mechanisms behind the spontaneous functional recovery of denervated facial muscles in male rodents. Recovered facial muscles demonstrated an abundance of cholinergic axonal endings establishing functional neuromuscular junctions. The parasympathetic source of the neuronal input was confirmed to be in the pterygopalatine ganglion. Furthermore, the autonomically reinnervated facial muscles underwent a muscle fiber change to a purely intermediate muscle fiber population (MHCIIa). Finally, electrophysiological tests revealed that the postganglionic parasympathetic fibers travel to the facial muscles via the sensory infraorbital nerve. Our findings demonstrated expanded neuromuscular plasticity of denervated striated muscles enabling functional recovery via alien autonomic fibers. These findings may further explain the underlying mechanisms of sensory protection implemented to prevent atrophy of a denervated muscle.SIGNIFICANCE STATEMENT:Nerve injuries represent significant morbidity and disability for patients. Rewiring motor nerve fibers to other target muscles have shown to be a successful approach in the restoration of motor function. This demonstrates the remarkable capacity of the central nervous system to adapt to the needs of the neuromuscular system. Yet, the capability of skeletal muscles being reinnervated by non-motor axons remains largely unknown. Here, we show that under deprivation of original efferent input, the neuromuscular system can undergo functional and morphological remodeling via autonomic nerve fibers. This may explain neurobiological mechanisms of the sensory protection phenomenon, which is due to parasympathetic reinnervation.

2.
Clin Orthop Relat Res ; 480(6): 1191-1204, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35202032

ABSTRACT

BACKGROUND: Currently used prosthetic solutions in upper extremity amputation have limited functionality, owing to low information transfer rates of neuromuscular interfacing. Although surgical innovations have expanded the functional potential of the residual limb, available interfaces are inefficacious in translating this potential into improved prosthetic control. There is currently no implantable solution for functional interfacing in extremity amputation which offers long-term stability, high information transfer rates, and is applicable for all levels of limb loss. In this study, we presented a novel neuromuscular implant, the the Myoelectric Implantable Recording Array (MIRA). To our knowledge, it is the first fully implantable system for prosthetic interfacing with a large channel count, comprising 32 intramuscular electrodes. QUESTIONS/PURPOSES: The purpose of this study was to evaluate the MIRA in terms of biocompatibility, functionality, and feasibility of implantation to lay the foundations for clinical application. This was achieved through small- and large-animal studies as well as test surgeries in a human cadaver. METHODS: We evaluated the biocompatibility of the system's intramuscular electromyography (EMG) leads in a rabbit model. Ten leads as well as 10 pieces of a biologically inert control material were implanted into the paravertebral muscles of four animals. After a 3-month implantation, tissue samples were taken and histopathological assessment performed. The probes were scored according to a protocol for the assessment of the foreign body response, with primary endpoints being inflammation score, tissue response score, and capsule thickness in µm. In a second study, chronic functionality of the full system was evaluated in large animals. The MIRA was implanted into the shoulder region of six dogs and three sheep, with intramuscular leads distributed across agonist and antagonist muscles of shoulder flexion. During the observation period, regular EMG measurements were performed. The implants were removed after 5 to 6 months except for one animal, which retained the implant for prolonged observation. Primary endpoints of the large-animal study were mechanical stability, telemetric capability, and EMG signal quality. A final study involved the development of test surgeries in a fresh human cadaver, with the goal to determine feasibility to implant relevant target muscles for prosthetic control at all levels of major upper limb amputation. RESULTS: Evaluation of the foreign body reaction revealed favorable biocompatibility and a low-grade tissue response in the rabbit study. No differences regarding inflammation score (EMG 4.60 ± 0.97 [95% CI 4.00 to 5.20] versus control 4.20 ± 1.48 [95% CI 3.29 to 5.11]; p = 0.51), tissue response score (EMG 4.00 ± 0.82 [95% CI 3.49 to 4.51] versus control 4.00 ± 0.94 [95% CI 3.42 to 4.58]; p > 0.99), or thickness of capsule (EMG 19.00 ± 8.76 µm [95% CI 13.57 to 24.43] versus control 29.00 ± 23.31 µm [95% CI 14.55 to 43.45]; p = 0.29) were found compared with the inert control article (high-density polyethylene) after 3 months of intramuscular implantation. Throughout long-term implantation of the MIRA in large animals, telemetric communication remained unrestricted in all specimens. Further, the implants retained the ability to record and transmit intramuscular EMG data in all animals except for two sheep where the implants became dislocated shortly after implantation. Electrode impedances remained stable and below 5 kΩ. Regarding EMG signal quality, there was little crosstalk between muscles and overall average signal-to-noise ratio was 22.2 ± 6.2 dB. During the test surgeries, we found that it was possible to implant the MIRA at all major amputation levels of the upper limb in a human cadaver (the transradial, transhumeral, and glenohumeral levels). For each level, it was possible to place the central unit in a biomechanically stable environment to provide unhindered telemetry, while reaching the relevant target muscles for prosthetic control. At only the glenohumeral level, it was not possible to reach the teres major and latissimus dorsi muscles, which would require longer lead lengths. CONCLUSION: As assessed in a combination of animal model and cadaver research, the MIRA shows promise for clinical research in patients with limb amputation, where it may be employed for all levels of major upper limb amputation to provide long-term stable intramuscular EMG transmission. CLINICAL RELEVANCE: In our study, the MIRA provided high-bandwidth prosthetic interfacing through intramuscular electrode sites. Its high number of individual EMG channels may be combined with signal decoding algorithms for accessing spinal motor neuron activity after targeted muscle reinnervation, thus providing numerous degrees of freedom. Together with recent innovations in amputation surgery, the MIRA might enable improved control approaches for upper limb amputees, particularly for patients with above-elbow amputation where the mismatch between available control signals and necessary degrees of freedom for prosthetic control is highest.


Subject(s)
Artificial Limbs , Animals , Cadaver , Dogs , Electrodes, Implanted , Electromyography , Feasibility Studies , Humans , Inflammation , Rabbits , Sheep
3.
Muscle Nerve ; 54(2): 292-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26788932

ABSTRACT

INTRODUCTION: Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. METHODS: Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. RESULTS: The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. CONCLUSIONS: This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Animals , Diagnosis, Computer-Assisted , Diagnostic Imaging , Immunohistochemistry , Male , Myosin Heavy Chains/classification , Rats , Rats, Sprague-Dawley , Regression Analysis
4.
J Clin Med ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792387

ABSTRACT

Background: Lipedema is a subcutaneous adipose tissue disorder characterized by increased pathological adipocytes mainly in the extremities. Vitamin D is stored in adipocytes, and serum levels inversely correlate with BMI. As adipocytes are removed during liposuction, lipedema patients might be prone to further substantial vitamin D loss while their levels are already decreased. Therefore, we examined the effect of liposuction on perioperative serum 25-hydroxyvitamin D levels. Methods: In patients undergoing lipedema liposuction, blood samples were obtained pre- and postoperatively. Statistical analyses were performed to correlate the volume of lipoaspirate, patients' BMI and number of sessions to vitamin D levels. Results: Overall, 213 patients were analyzed. Mean liposuction volume was 6615.33 ± 3884.25 mL, mean BMI was 32.18 ± 7.26 kg/m2. mean preoperative vitamin D levels were 30.1 ± 14.45 ng/mL (borderline deficient according to the endocrine society) and mean postoperative vitamin D levels were 21.91 ± 9.18 ng/mL (deficient). A significant decrease in serum vitamin D was seen in our patients (p < 0.001) of mean 7.83 ng/mL. The amount of vitamin D loss was not associated with BMI or aspiration volume in our patients (p > 0.05). Interestingly, vitamin D dynamics showed a steady drop regardless of volume aspirated or preoperative levels. Conclusions: Many lipedema patients have low vitamin D levels preoperatively. Liposuction significantly reduced these levels additionally, regardless of aspirated volume or BMI. However, vitamin D loss was constant and predictable; thus, patients at risk are easily identified. Overall, lipedema patients undergoing liposuction are prone to vitamin D deficiency, and the long-term effects in this population are currently unknown.

5.
Plast Reconstr Surg ; 153(1): 76-89, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37036325

ABSTRACT

BACKGROUND: Breast implant-related complications can be reduced by strict antiseptic precautions during insertion, but bacteria can often be found on implant surfaces on the occasion of revision surgery. The authors prospectively analyzed the association of bacteria found on breast implant surfaces with implant-related complications in breast implant revision cases. METHODS: The authors analyzed a total of 100 breast implant revisions in 66 patients between August of 2018 and January of 2021. Capsular swabs and capsular samples were taken intraoperatively. Analyses on the occurrence of bacteria and the occurrence of implant-related complications were performed. In addition, correlations between bacteria-contaminated breast implant surfaces and implant-related complications were performed. RESULTS: Implant-related complications (perforation, rupture, capsular contraction) were observed in 42 implant sites: eight unilateral and 34 bilateral cases. In total, 16 swabs showed positive bacterial growth, 10 of which were associated with a breast implant-related complication (χ 2 = x, y, and z; P = 0.006). The most common implant-based complication at contaminated prosthetics was implant rupture. The association of contaminated breast implants and implant rupture was statistically significant. CONCLUSIONS: The authors identified a correlation between implant complications and Gram-positive bacteria found on breast implant surfaces. The most common implant-based complication seen at simultaneously positive samples was implant rupture in 50% of the authors' cases. No capsular contraction or other complications were seen. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, III.


Subject(s)
Breast Implantation , Breast Implants , Mammaplasty , Humans , Breast Implants/adverse effects , Breast Implantation/adverse effects , Mammaplasty/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Gram-Positive Bacteria
6.
Nat Commun ; 15(1): 5337, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914540

ABSTRACT

Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.


Subject(s)
Bionics , Muscle, Skeletal , Animals , Rats , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Feedback, Sensory/physiology , Proprioception/physiology , Ganglia, Spinal/physiology , Mechanoreceptors/physiology , Muscle Spindles/physiology , Male , Female , Touch/physiology , Skin/innervation
7.
J Pers Med ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36836578

ABSTRACT

The peroneal nerve is one of the most commonly injured nerves of the lower extremity. Nerve grafting has been shown to result in poor functional outcomes. The aim of this study was to evaluate and compare anatomical feasibility as well as axon count of the tibial nerve motor branches and the tibialis anterior motor branch for a direct nerve transfer to reconstruct ankle dorsiflexion. In an anatomical study on 26 human body donors (52 extremities) the muscular branches to the lateral (GCL) and the medial head (GCM) of the gastrocnemius muscle, the soleus muscle (S) as well as the tibialis anterior muscle (TA) were dissected, and each nerve's external diameter was measured. Nerve transfers from each of the three donor nerves (GCL, GCM, S) to the recipient nerve (TA) were performed and the distance between the achievable coaptation site and anatomic landmarks was measured. Additionally, nerve samples were taken from eight extremities, and antibody as well immunofluorescence staining were performed, primarily evaluating axon count. The average diameter of the nerve branches to the GCL was 1.49 ± 0.37, to GCM 1.5 ± 0.32, to S 1.94 ± 0.37 and to TA 1.97 ± 0.32 mm, respectively. The distance from the coaptation site to the TA muscle was 43.75 ± 12.1 using the branch to the GCL, 48.31 ± 11.32 for GCM, and 19.12 ± 11.68 mm for S, respectively. The axon count for TA was 1597.14 ± 325.94, while the donor nerves showed 297.5 ± 106.82 (GCL), 418.5 ± 62.44 (GCM), and 1101.86 ± 135.92 (S). Diameter and axon count were significantly higher for S compared to GCL as well as GCM, while regeneration distance was significantly lower. The soleus muscle branch exhibited the most appropriate axon count and nerve diameter in our study, while also reaching closest to the tibialis anterior muscle. These results indicate the soleus nerve transfer to be the favorable option for the reconstruction of ankle dorsiflexion, in comparison to the gastrocnemius muscle branches. This surgical approach can be used to achieve a biomechanically appropriate reconstruction, in contrast to tendon transfers which generally only achieve weak active dorsiflexion.

8.
Front Neuroanat ; 17: 1198042, 2023.
Article in English | MEDLINE | ID: mdl-37332322

ABSTRACT

Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems.

9.
J Neurosurg ; 139(5): 1396-1404, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37029679

ABSTRACT

OBJECTIVE: Intrinsic function is indispensable for dexterous hand movements. Distal ulnar nerve defects can result in intrinsic muscle dysfunction and sensory deficits. Although the ulnar nerve's fascicular anatomy has been extensively studied, quantitative and topographic data on motor axons traveling within this nerve remain elusive. METHODS: The ulnar nerves of 14 heart-beating organ donors were evaluated. The motor branches to the flexor carpi ulnaris (FCU) and flexor digitorum profundus (FDP) muscles and the dorsal branch (DoBUN) as well as 3 segments of the ulnar nerve were harvested in 2-cm increments. Samples were subjected to double immunofluorescence staining using antibodies against choline acetyltransferase and neurofilament. RESULTS: Samples revealed more than 25,000 axons in the ulnar nerve at the forearm level, with a motor axon proportion of only 5%. The superficial and DoBUN showed high axon numbers of more than 21,000 and 9300, respectively. The axonal mapping of more than 1300 motor axons revealed an increasing motor/sensory ratio from the proximal ulnar nerve (1:20) to the deep branch of the ulnar nerve (1:7). The motor branches (FDP and FCU) showed that sensory axons outnumber motor axons by a ratio of 10:1. CONCLUSIONS: Knowledge of the detailed axonal architecture of the motor and sensory components of the human ulnar nerve is of the utmost importance for surgeons considering fascicular grafting or nerve transfer surgery. The low number of efferent axons in motor branches of the ulnar nerve and their distinct topographical distribution along the distal course of the nerve is indispensable information for modern nerve surgery.


Subject(s)
Nerve Transfer , Ulnar Nerve , Humans , Forearm/innervation , Muscle, Skeletal/innervation , Elbow , Axons/physiology
10.
Handchir Mikrochir Plast Chir ; 55(2): 140-147, 2023 Apr.
Article in German | MEDLINE | ID: mdl-37023761

ABSTRACT

The treatment of peripheral nerve pathologies requires a rapid and precise diagnosis. However, the correct identification of nerve pathologies is often difficult and valuable time is lost in the process. In this position paper of the German-Speaking Group for Microsurgery of Peripheral Nerves and Vessels (DAM), we describe the current evidence for various perioperative diagnostics for the detection of traumatic peripheral nerve lesions or compression syndromes. In detail, we evaluated the importance of clinical examinations, electrophysiology, nerve ultrasound and magnetic resonance neurography. Additionally, we surveyed our members for their diagnostic approach in this regard. The statements are based on a consensus workshop on the 42nd meeting of the DAM in Graz, Austria.


Subject(s)
Microsurgery , Peripheral Nerves , Humans , Syndrome , Peripheral Nerves/surgery , Austria , Magnetic Resonance Imaging
11.
J Adv Res ; 44: 135-147, 2023 02.
Article in English | MEDLINE | ID: mdl-36725185

ABSTRACT

INTRODUCTION: Neuromuscular control of the facial expressions is provided exclusively via the facial nerve. Facial muscles are amongst the most finely tuned effectors in the human motor system, which coordinate facial expressions. In lower vertebrates, the extracranial facial nerve is a mixed nerve, while in mammals it is believed to be a pure motor nerve. However, this established notion does not agree with several clinical signs in health and disease. OBJECTIVES: To elucidate the facial nerve contribution to the facial muscles by investigating axonal composition of the human facial nerve. To reveal new innervation pathways of other axon types of the motor facial nerve. METHODS: Different axon types were distinguished using specific molecular markers (NF, ChAT, CGRP and TH). To elucidate the functional role of axon types of the facial nerve, we used selective elimination of other neuronal support from the trigeminal nerve. We used retrograde neuronal tracing, three-dimensional imaging of the facial muscles, and high-fidelity neurophysiological tests in animal model. RESULTS: The human facial nerve revealed a mixed population of only 85% motor axons. Rodent samples revealed a fiber composition of motor, afferents and, surprisingly, sympathetic axons. We confirmed the axon types by tracing the originating neurons in the CNS. The sympathetic fibers of the facial nerve terminated in facial muscles suggesting autonomic innervation. The afferent fibers originated in the facial skin, confirming the afferent signal conduction via the facial nerve. CONCLUSION: These findings reveal new innervation pathways via the facial nerve, support the sympathetic etiology of hemifacial spasm and elucidate clinical phenomena in facial nerve regeneration.


Subject(s)
Facial Nerve , Hemifacial Spasm , Animals , Humans , Axons/physiology , Facial Muscles , Facial Nerve/physiology , Neural Pathways , Rodentia
12.
J Clin Med ; 11(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35160259

ABSTRACT

BACKGROUND: Surgical breast reconstruction is an integral part of cancer treatment but must not compromise oncological safety. Patient-dependent risk factors (smoking, BMI, etc.) are said to influence perioperative outcomes and have often been investigated. Here, we analyzed independent perioperative risk factors for increased postoperative blood loss or drainage fluid volume loss and their possible impact. METHODS: Patients undergoing breast reconstructions after breast cancer with either tissue expanders, definitive breast implants, or autologous breast reconstruction were analyzed. The collected data on patients' characteristics, blood, and drainage fluid loss were correlated and statistically investigated. RESULTS: Traditional patient-dependent risk factors did not influence blood loss or drainage volumes. On the contrary, patients with preoperative anemia had significantly higher drainage outputs compared to non-anemic patients (U = 2448.5; p = 0.0012). The administration of low molecular weight heparin showed a tendency of increased drainage output. Similar correlations could be seen in prolonged procedure time, all of which contributed to prolonged hospital stay (τb = 0.371; p < 0.00001). CONCLUSIONS: Preoperative anemia is one of the most critical factors influencing postoperative drainage fluid output. Previously assumed patient-dependent risk factors did not affect drainage output. Preoperative anemia must be monitored, and if possible, treated preoperatively to reduce postoperative morbidity.

13.
Plast Reconstr Surg Glob Open ; 10(2): e4118, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198349

ABSTRACT

The palmaris longus muscle is one of the most variant muscles in the human body. Its variations such as the palmaris profundus can cause nerve compression symptoms. Here, we present a case of severe nerve affection due to a palmaris profundus muscle. The palmaris profundus tendon was partially resected at intervention. Pain symptoms started immediately after wearing off of the local anesthetic, and revision surgery had to be performed. Severe traction on the median nerve by the palmaris profundus tendon could be observed at revision. The resection of the palmaris profundus tendon instantly eased the patient's severe pain. At preoperative examination and planning of surgery, the palmaris profundus was not detected. As there is no test for the detection of anatomic variations of the palmaris longus muscle at physical examination, discovering such anomalies is not possible without imaging tools. Ultrasonographic examinations aid in preoperative planning of carpal tunnel release, especially at revision surgeries.

14.
Neural Regen Res ; 17(5): 1088-1095, 2022 May.
Article in English | MEDLINE | ID: mdl-34558537

ABSTRACT

Clinically, peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries. Most surgical concepts, however, have investigated nerve reconstructions in adult animal models. The immature neuromuscular system reacts differently to the effects of nerve lesion and surgery and is poorly investigated due to the lack of reliable experimental models. Here, we describe an experimental forelimb model in the neonatal rat, to study these effects on both the peripheral and central nervous systems. Within 24 hours after birth, three groups were prepared: In the nerve transfer group, a lesion of the musculocutaneous nerve was reconstructed by selectively transferring the ulnar nerve. In the negative control group, the musculocutaneous nerve was divided and not reconstructed and in the positive control group, a sham surgery was performed. The animal´s ability to adapt to nerve lesions and progressive improvement over time were depict by the Bertelli test, which observes the development of grooming. Twelve weeks postoperatively, animals were fully matured and the nerve transfer successfully reinnervated their target muscles, which was indicated by muscle force, muscle weight, and cross sectional area evaluation. On the contrary, no spontaneous regeneration was found in the negative control group. In the positive control group, reference values were established. Retrograde labeling indicated that the motoneuron pool of the ulnar nerve was reduced following nerve transfer. Due to this post-axotomy motoneuron death, a diminished amount of motoneurons reinnervated the biceps muscle in the nerve transfer group, when compared to the native motoneuron pool of the musculocutaneous nerve. These findings indicate that the immature neuromuscular system behaves profoundly different than similar lesions in adult rats and explains reduced muscle force. Ultimately, pathophysiologic adaptations are inevitable. The maturing neuromuscular system, however, utilizes neonatal capacity of regeneration and seizes a variety of compensation mechanism to restore a functional extremity. The above described neonatal rat model demonstrates a constant anatomy, suitable for nerve transfers and allows all standard neuromuscular analyses. Hence, detailed investigations on the pathophysiological changes and subsequent effects of trauma on the various levels within the neuromuscular system as well as neural reorganization of the neonatal rat may be elucidated. This study was approved by the Ethics Committee of the Medical University of Vienna and the Austrian Ministry for Research and Science (BMWF-66.009/0187-WF/V/3b/2015) on March 20, 2015.

15.
Hand Clin ; 37(3): 415-424, 2021 08.
Article in English | MEDLINE | ID: mdl-34253314

ABSTRACT

Targeted muscle reinnervation (TMR) is a surgical procedure, whereby nerves without muscle targets after extremity amputation are transferred to residual stump muscles. Thereby, the control of prosthesis is improved by increasing the number of independent muscle signals. The authors describe indications for TMR to improve prosthetic control and present standard nerve transfer matrices suitable for transhumeral and glenohumeral amputees. In addition, the perioperative procedure is described, including preoperative testing, surgical approach, and postoperative rehabilitation. Based on recent neurophysiological insights and technological advances, they present an outlook into the future of prosthetic control combining TMR and implantable electromyographic technology.


Subject(s)
Amputees , Artificial Limbs , Amputation, Surgical , Amputation Stumps , Humans , Muscle, Skeletal/surgery
16.
Front Neuroanat ; 15: 650761, 2021.
Article in English | MEDLINE | ID: mdl-33828465

ABSTRACT

The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity.

17.
Sci Rep ; 11(1): 12360, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117270

ABSTRACT

For large avians such as vultures, limb loss leads to loss of ambulation and eventually death from malnutrition. Prosthetic devices may replace the limb, however, conventional prosthetic sockets are not feasible in feathered limbs and the extreme stress and strain of unreflected daily use in animals. Osseointegration is a novel technique, where external prosthetic parts are connected directly to a bone anchor to provide a solid skeletal-attachment. This concept provides a high degree of embodiment since osseoperception will provide direct intuitive feedback allowing natural use of the limb in gait and feeding. Here we demonstrate for the first time an osseointegrated bionic reconstruction of a limb in a vulture after a tarsometatarsal amputation with a longterm follow-up.

18.
Front Med (Lausanne) ; 7: 590758, 2020.
Article in English | MEDLINE | ID: mdl-33262992

ABSTRACT

Background : Patients with high- and low-voltage electrical injuries differ in their clinical presentation from minor symptoms to life-threatening conditions. For an adequate diagnosis and treatment strategy a multidisciplinary team is often needed, due to the heterogeneity of the clinical presentation. To minimize costs and medical resources, especially for patients with mild symptoms presenting after low-voltage electrical injuries, risk stratification for the development of further complications is needed. Methods : During 2012-2019 two independent patient cohorts admitted with electrical injuries in two maximum care university hospitals in Germany and Austria were investigated to quantify risk factors for prolonged treatment, the need of surgery and death in low-voltage injuries. High-voltage injuries were used as reference in the analysis of the low-voltage electrical injury. Results : We analyzed 239 admitted patients with low-voltage (75%; 276 ± 118 V), high-voltage (17%; 12.385 ± 28.896 V) or unclear voltage (8%). Overall mortality was 2% (N = 5) associated only with high-voltage injuries. Patients with low-voltage injuries presented with electrocution entry marks (63%), various neurological symptoms (31%), burn injuries (at least second degree) (23%), pain (27%), and cardiac symptoms (9%) including self-limiting thoracic pain and dysrhythmia without any therapeutic need. Seventy three percentage of patients with low-voltage injury were discharged within 24 h. The remaining patients stayed in the hospital (11 ± 10 days) for treatment of entry marks and burns, with an overall need for surgery of 12% in all low-voltage injuries. Conclusions : The only identified risk factors for prolonged hospital stay in patients with low-voltage electrical injuries were the treatment of burns and electric marks. In this multi-center analysis of hospitalized patients, low-voltage electrical injuries were not associated with cardiac arrhythmia or mortality. Therefore, we suggest that asymptomatic patients, without preexisting conditions, with low-voltage injury can be discharged after an initial check-up without prolonged monitoring.

19.
PLoS One ; 15(4): e0229530, 2020.
Article in English | MEDLINE | ID: mdl-32251479

ABSTRACT

BACKGROUND: Peripheral nerve injury in the upper extremity is linked to high socioeconomic burden, yet cost-analyses are rare and from small cohorts. The objective of this study was to determine the costs and long-term socioeconomic effects of peripheral nerve injuries in the upper extremity in Germany. METHODS: We analyzed data of 250 patients with 268 work-related upper extremity nerve injuries from acute treatment to long-term follow-up on rehabilitation, sick-leave and disability-pension. RESULTS: Patients were on average 39.9±14.2 years old, male (85%) and mean inpatient treatment was 7±6 days. Location of nerve was 8% (N = 19) proximal to the wrist, 26% (N = 65) at the wrist and metacarpus, and 66% (N = 166) at phalangeal level. Acute in-patient treatment for (single) median nerve injury accounted for 66% with hospital reimbursement of 3.570€, ulnar nerve injury for 24% and 2.650€ and radial nerve injury for 10% and 3.166€, all including finger nerve injuries. The remaining were combined nerve injuries, with significantly higher costs, especially if combined with tendon 5.086€ or vascular injury 4.886€. Based on location, nerve injuries proximal to the wrist averaged 5.360±6.429€, at the wrist and metacarpus 3.534±2.710€ and at the phalangeal level 3.418±3.330€. 16% required rehabilitation with average costs of 5.842€ and stay of 41±21 days. Sick leave was between 11-1109 days with an average of 147 days with socioeconomic costs of 197€/day, equaling on average 17.640€. 30% received a mean yearly disability pension of 3.187€, that would account to 102.167€ per lifetime. CONCLUSION: This large German patient sample indicates that nerve injury has a major impact on function and employment, resulting in significant health care costs. Both proximal and distal nerve injuries led to long-term disability, subsequent sick-leave and in 30% to permanent disability pension. These data are determined to support future studies and health economical work on prevention, treatment and rehabilitation of these often small injuries with great consequences.


Subject(s)
Occupational Injuries/economics , Peripheral Nerve Injuries/economics , Socioeconomic Factors , Upper Extremity/pathology , Adult , Female , Germany/epidemiology , Health Care Costs , Hospitalization/economics , Humans , Male , Middle Aged , Occupational Injuries/epidemiology , Occupational Injuries/physiopathology , Peripheral Nerve Injuries/epidemiology , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/therapy , Sick Leave/economics
20.
Handchir Mikrochir Plast Chir ; 52(6): 458-463, 2020 Dec.
Article in German | MEDLINE | ID: mdl-32702767

ABSTRACT

In addition to outcome assessments, cost effectiveness of surgical treatments becomes increasingly important. Both, insurance companies and hospital administrations aim for short and efficient procedures to reduce costs.Microsurgical procedures are often surpassing traditional treatment options in terms of function and aesthetics. However, they are more expensive as they require a high level of surgical expertise, more theatre capacity and longer inpatient treatment. Adequate reimbursement is mandatory, if we want to continuously perform these procedures with the best possible quality and outcome. To cover the case-related expenses of each specialty, multidisciplinary procedures require appropriate distribution of reimbursements to each department.The main diagnosis as well as all complications and relevant comorbidities should be documented to obtain the correct DRG. The additional financial benefit of a microsurgical procedure in a multidisciplinary case can be calculated by specifying the procedural increment in pay. Therefore, a fair distribution of revenues to each participating department should be performed. Different models exist, which lead to a benefit in compensation for all departments. Unfortunately, distribution of resources is still insufficiently managed in many hospitals, which hampers high quality multidisciplinary microsurgical procedures. Still, picking the best possible procedure for our patients, independently of financial incentives, is of utmost importance.


Subject(s)
Economic Factors , Microsurgery , Consensus , Cost-Benefit Analysis , Humans , Peripheral Nerves/surgery
SELECTION OF CITATIONS
SEARCH DETAIL