Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142772

ABSTRACT

The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.


Subject(s)
Biological Products , Sodium-Hydrogen Exchangers , Acid-Base Equilibrium , Humans , Hydrogen-Ion Concentration , Protein Isoforms/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchangers/metabolism
2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563010

ABSTRACT

Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R-/- mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R-/- and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R-/- and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Gastrointestinal Microbiome , Inflammasomes , Receptors, Purinergic P2X7 , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/metabolism , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , RNA, Ribosomal, 16S , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
3.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G421-G431, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32755385

ABSTRACT

The loss of the intestinal Na+/H+ exchanger isoform 8 (NHE8) results in an ulcerative colitis-like condition with reduction of mucin production and dysbiosis, indicating that NHE8 plays an important role in intestinal mucosal protection. The aim of this study was to investigate the potential rebalance of the altered microbiota community of NHE8-deficient mice via fecal microbiota transplantation (FMT) and feeding probiotic VSL#3. We also aimed to stimulate mucin production by sodium butyrate administration via enema. Data from 16S rRNA sequencing showed that loss of NHE8 contributes to colonic microbial dysbiosis with reduction of butyrate-producing bacteria. FMT increased bacterial adhesion in the colon in NHE8 knockout (NHE8KO) mice. Periodic-acid Schiff reagent (PAS) stain and quantitative PCR showed no changes in mucin production during FMT. In mice treated with the probiotic VSL#3, a reduction of Lactobacillus and segmented filamentous bacteria (SFB) in NHE8KO mouse colon was detected and an increase in goblet cell theca was observed. In NHE8KO mice receiving sodium butyrate (NaB), 1 mM NaB stimulated Muc2 expression without changing goblet cell theca, but 10 mM NaB induced a significant reduction of goblet cell theca without altering Muc2 expression. Furthermore, 5 mM and 10 mM NaB-treated HT29-MTX cells displayed increased apoptosis, while 0.5 mM NaB stimulated Muc2 gene expression. These data showed that loss of NHE8 leads to dysbiosis with reduction of butyrate-producing bacteria and FMT and VSL#3 failed to rebalance the microbiota in NHE8KO mice. Therefore, FMT, VSL#3, and NaB are not able to restore mucin production in the absence of NHE8 in the intestine.NEW & NOTEWORTHY Loss of Na+/H+ exchanger isoform 8 (NHE8), a Slc9 family of exchanger that contributes to sodium uptake, cell volume regulation, and intracellular pH homeostasis, resulted in dysbiosis with reduction of butyrate-producing bacteria and decrease of Muc2 production in the intestine in mice. Introducing fecal microbiota transplantation (FMT) and VSL#3 in NHE8 knockout (NHE8KO) mice failed to rebalance the microbiota in these mice. Furthermore, administration of FMT, VSL#3, and sodium butyrate was unable to restore mucin production in the absence of NHE8 in the intestine.


Subject(s)
Intestinal Mucosa/physiology , Sodium-Hydrogen Exchangers/physiology , Animals , Butyrates/metabolism , Butyric Acid/administration & dosage , Colon/microbiology , Dysbiosis/etiology , Dysbiosis/microbiology , Dysbiosis/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Goblet Cells/drug effects , Goblet Cells/physiology , HT29 Cells , Humans , Lactobacillus/physiology , Mice , Mice, Knockout , Mucins/biosynthesis , Probiotics/administration & dosage , Sodium-Hydrogen Exchangers/deficiency
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1183-1194, 2017 06.
Article in English | MEDLINE | ID: mdl-28286160

ABSTRACT

P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RBlow. Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.


Subject(s)
Colitis/immunology , Immunity, Mucosal , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Receptors, Purinergic P2X7/immunology , T-Lymphocytes/immunology , Animals , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Female , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Oxazolone/adverse effects , Oxazolone/pharmacology , Receptors, Purinergic P2X7/genetics , T-Lymphocytes/pathology , Trinitrobenzenesulfonic Acid/toxicity
5.
Mediators Inflamm ; 2016: 1363818, 2016.
Article in English | MEDLINE | ID: mdl-27471349

ABSTRACT

Intestinal immunity is finely regulated by several concomitant and overlapping mechanisms, in order to efficiently sense external stimuli and mount an adequate response of either tolerance or defense. In this context, a complex interplay between immune and nonimmune cells is responsible for the maintenance of normal homeostasis. However, in certain conditions, the disruption of such an intricate network may result in intestinal inflammation, including inflammatory bowel disease (IBD). IBD is believed to result from a combination of genetic and environmental factors acting in concert with an inappropriate immune response, which in turn interacts with nonimmune cells, including nervous system components. Currently, evidence shows that the interaction between the immune and the nervous system is bidirectional and plays a critical role in the regulation of intestinal inflammation. Recently, the maintenance of intestinal homeostasis has been shown to be under the reciprocal control of the microbiota by immune mechanisms, whereas intestinal microorganisms can modulate mucosal immunity. Therefore, in addition to presenting the mechanisms underlying the interaction between immune and nervous systems in the gut, here we discuss the role of the microbiota also in the regulation of neuroimmune crosstalk involved in intestinal homeostasis and inflammation, with potential implications to IBD pathogenesis.


Subject(s)
Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Neuroimmunomodulation/physiology , Animals , Gastrointestinal Tract/pathology , Homeostasis , Humans , Inflammatory Bowel Diseases/pathology
6.
Mediators Inflamm ; 2015: 936193, 2015.
Article in English | MEDLINE | ID: mdl-25821356

ABSTRACT

Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs). In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades, genetic polymorphisms have been associated with several diseases including inflammatory bowel disease. Special emphasis has been given to the susceptibility to Crohn's disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome. Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in inflammatory bowel disease remain to be clarified.


Subject(s)
Immunity, Innate/immunology , Inflammatory Bowel Diseases/immunology , Animals , Epithelium/metabolism , Epithelium/pathology , Humans , Inflammasomes/immunology , Inflammation/immunology , Inflammation/physiopathology , Inflammatory Bowel Diseases/physiopathology , Intestinal Mucosa/pathology , Polymorphism, Genetic , Signal Transduction , Toll-Like Receptors/metabolism
7.
Mediators Inflamm ; 2014: 423957, 2014.
Article in English | MEDLINE | ID: mdl-24701033

ABSTRACT

Interleukin- (IL-) 33 is a widely expressed cytokine present in different cell types, such as epithelial, mesenchymal, and inflammatory cells, supporting a predominant role in innate immunity. IL-33 can function as a proinflammatory cytokine inducing Th2 type of immune response being involved with the defense against parasitic infections of the gastrointestinal tract. In addition, it has been proposed that IL-33 can act as a signaling molecule alerting the immune system of danger or tissue damage. Recently, in the intestinal mucosa, overexpression of IL-33 has been reported in samples from patients with inflammatory bowel diseases (IBD). This review highlights the available data regarding IL-33 in human IBD and discusses emerging roles for IL-33 as a key modulator of intestinal inflammation.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Interleukins/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation , Interleukin-33 , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Polymorphism, Genetic , Signal Transduction , Th2 Cells/cytology
8.
Gastro Hep Adv ; 2(2): 199-208, 2023.
Article in English | MEDLINE | ID: mdl-36936401

ABSTRACT

BACKGROUND AND AIMS: Sodium-hydrogen exchanger 8 (NHE8) is expressed in array of tissues and has pleiotropic functions beyond simply exchanging sodium and hydrogen across cell membrane. This study investigates the expression pattern of liver NHE8 and its roles in carbon tetrachloride (CCl4)-induced liver injury. METHODS: NHE8 expression pattern was investigated in mouse livers of different ages and in HepG2 cells. CCl4 was given to mice to determine NHE8 expression in CCl4-induced liver injury. Tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were used to treat HepG2 cells to evaluate their effect on NHE8 expression. The CCl4-induced acute and chronic liver injuries were also used in NHE8KO mice to determine the role of NHE8 deficiency in liver injury. RESULTS: NHE8 was mainly detected in the peripheral area of hepatocytes in mouse liver and in HepG2 cells. The liver NHE8 expression was 47% of NHE1, and liver NHE8 expression was the lowest at suckling age and reached plateau at 4 weeks of age. Similar to dextran sulfate sodium colitis reduced intestinal NHE8, CCl4-induced acute liver injury also inhibited NHE8 expression. The absence of NHE8 in the liver displayed abnormal hepatocyte morphology and has elevated expression of IL-1ß and Lgr5. However, unlike NHE8 deficiency enhanced dextran sulfate sodium-induced colon tissue damage, the absence of NHE8 in the liver did not exacerbate CCl4-induced liver injury. Although both TNF-α and IL-1ß were elevated in CCl4-induced liver injury, they could not inhibit NHE8 expression in hepatocytes, which is in contrast with TNF-α-mediated NHE8 inhibition in the intestine. CONCLUSION: Liver NHE8 has unique roles that are different from the intestine.

9.
Surgery ; 166(5): 914-925, 2019 11.
Article in English | MEDLINE | ID: mdl-31519305

ABSTRACT

BACKGROUND: Dehiscence of intestinal anastomosis results in high morbidity and mortality. The aim of this study was to investigate the effects of locally administered adipose tissue-derived mesenchymal stromal cells in a model of high-risk colonic anastomosis in rats. METHODS: Seven days after induction of colitis with 2,4,6-trinitrobenzene sulfonic acid, Wistar rats were submitted to a transection of the descending colon followed by end-to-end anastomosis and were then treated with 2×106 adipose tissue-derived mesenchymal stromal cells (from the preperitoneal fat) or an acellular culture solution instilled onto the surface of the anastomosis. At day 14, after macroscopic survey of the abdominal cavity, the anastomotic area was submitted to histologic and immunohistochemical analysis, evaluation of myeloperoxidase activity, fibrosis, epithelial integrity, NF-κ B activation, expression of inflammatory cytokines, and extracellular matrix-related genes. RESULTS: Anastomotic leakage and mortality associated with high-risk anastomosis decreased with treatment with adipose tissue-derived mesenchymal stromal cells (P < .03). Application of adipose tissue-derived mesenchymal stromal cells resulted in lower histologic scores (P = .011), decreased deposition of collagen fibers (P = .003), preservation of goblet cells (P = .033), decreased myeloperoxidase activity (P = .012), decreased accumulation of CD4+ T-cells (P = .014) and macrophages (P = .011) in the lamina propria, a decrease in the number of apoptotic cells (P = .008), and the activation of NF-κ B (P = .036). Overexpression of IL-17, TNF-α , IFN-γ, and metalloproteinases in the acellular culture solution-treated, high-risk anastomosis group decreased (P < .05) to near normal values with adipose tissue-derived mesenchymal stromal cells treatment. CONCLUSION: Improvements in outcomes of a high-risk colonic anastomosis with adipose tissue-derived mesenchymal stromal cells therapy reflect the immunomodulatory activity and healing effect of these cells, even after just topical administration and reinforces their use in future translational research.


Subject(s)
Anastomotic Leak/prevention & control , Colitis/surgery , Colon/surgery , Intra-Abdominal Fat/cytology , Mesenchymal Stem Cell Transplantation/methods , Anastomosis, Surgical/adverse effects , Anastomosis, Surgical/methods , Anastomotic Leak/etiology , Animals , Colitis/chemically induced , Disease Models, Animal , Humans , Male , Rats , Rats, Wistar , Treatment Outcome , Trinitrobenzenesulfonic Acid/toxicity
10.
Front Immunol ; 10: 442, 2019.
Article in English | MEDLINE | ID: mdl-30936867

ABSTRACT

Background and aims: Mice orally infected with T. gondii develop Crohn's disease (CD)-like enteritis associated with severe mucosal damage and a systemic inflammatory response, resulting in high morbidity and mortality. Previously, helminthic infections have shown therapeutic potential in experimental colitis. However, the role of S. mansoni in T. gondii-induced CD-like enteritis has not been elucidated. Our study investigated the mechanisms underlying T. gondii-induced ileitis and the potential therapeutic effect of S. mansoni coinfection. Methods: C57BL/6 mice were infected by subcutaneous injection of cercariae of the BH strain of S. mansoni, and 7-9 weeks later, they were orally infected with cysts of the ME49 strain of T. gondii. After euthanasia, the ileum was removed for histopathological analysis; staining for goblet cells; immunohistochemistry characterizing mononuclear cells, lysozyme expression, apoptotic cells, and intracellular pathway activation; and measuring gene expression levels by real-time PCR. Cytokine concentrations were measured in the serial serum samples and culture supernatants of the ileal explants, in addition to myeloperoxidase (MPO) activity. Results:T. gondii-monoinfected mice presented dense inflammatory cell infiltrates and ulcerations in the terminal ileum, with abundant cell extrusion, apoptotic bodies, and necrosis; these effects were absent in S. mansoni-infected or coinfected animals. Coinfection preserved goblet cells and Paneth cells, remarkably depleted in T. gondii-infected mice. Densities of CD4- and CD11b-positive cells were increased in T. gondii- compared to S. mansoni-infected mice and controls. MPO was significantly increased among T. gondii-mice, while attenuated in coinfected animals. In T. gondii-infected mice, the culture supernatants of the explants showed increased concentrations of TNF-alpha, IFN-gamma, and IL-17, and the ileal tissue revealed increased expression of the mRNA transcripts for IL-1 beta, NOS2, HMOX1, MMP3, and MMP9 and activation of NF-kappa B and p38 MAPK signaling, all of which were counterregulated by S. mansoni coinfection. Conclusion:S. mansoni coinfection attenuates T. gondii-induced ileitis by preserving mucosal integrity and downregulating the local inflammatory response based on the activation of NF-kappa B and MAPK. The protective function of prior S. mansoni infection suggests the involvement of innate immune mechanisms and supports a conceptually new approach to the treatment of chronic inflammatory diseases, including CD.


Subject(s)
Coinfection/immunology , Ileitis/prevention & control , Intestinal Mucosa/physiopathology , Schistosomiasis mansoni/immunology , Therapy with Helminths , Toxoplasmosis, Animal/therapy , Animals , Apoptosis , Crohn Disease/therapy , Cytokines/blood , Disease Models, Animal , Down-Regulation , Epithelium/physiology , Gene Expression Profiling , Ileitis/etiology , Ileitis/immunology , Ileitis/pathology , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Peroxidase/blood , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/immunology , Toxoplasmosis, Animal/complications , Toxoplasmosis, Animal/immunology
11.
World J Gastroenterol ; 24(41): 4622-4634, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30416310

ABSTRACT

The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of non-immune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct pro-inflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD. The effects determine pathologic changes, which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes. In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers, research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.


Subject(s)
Colitis, Ulcerative/pathology , Crohn Disease/pathology , Dysbiosis/pathology , Gastrointestinal Agents/therapeutic use , Inflammation Mediators/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cellular Reprogramming/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Crohn Disease/drug therapy , Crohn Disease/immunology , Crohn Disease/microbiology , Dysbiosis/genetics , Dysbiosis/immunology , Dysbiosis/microbiology , Epigenesis, Genetic , Gastrointestinal Agents/pharmacology , Gastrointestinal Microbiome/immunology , Genetic Predisposition to Disease , Humans , Inflammation Mediators/analysis , Inflammation Mediators/antagonists & inhibitors , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Leukocyte L1 Antigen Complex/analysis , Leukocyte L1 Antigen Complex/metabolism , Molecular Targeted Therapy/methods
12.
World J Gastroenterol ; 23(12): 2124-2140, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28405140

ABSTRACT

Bacterial colonization of the gut shapes both the local and the systemic immune response and is implicated in the modulation of immunity in both healthy and disease states. Recently, quantitative and qualitative changes in the composition of the gut microbiota have been detected in Crohn's disease and ulcerative colitis, reinforcing the hypothesis of dysbiosis as a relevant mechanism underlying inflammatory bowel disease (IBD) pathogenesis. Humans and microbes have co-existed and co-evolved for a long time in a mutually beneficial symbiotic association essential for maintaining homeostasis. However, the microbiome is dynamic, changing with age and in response to environmental modifications. Among such environmental factors, food and alimentary habits, progressively altered in modern societies, appear to be critical modulators of the microbiota, contributing to or co-participating in dysbiosis. In addition, food constituents such as micronutrients are important regulators of mucosal immunity, with direct or indirect effects on the gut microbiota. Moreover, food constituents have recently been shown to modulate epigenetic mechanisms, which can result in increased risk for the development and progression of IBD. Therefore, it is likely that a better understanding of the role of different food components in intestinal homeostasis and the resident microbiota will be essential for unravelling the complex molecular basis of the epigenetic, genetic and environment interactions underlying IBD pathogenesis as well as for offering dietary interventions with minimal side effects.


Subject(s)
Crohn Disease/diet therapy , Inflammatory Bowel Diseases/diet therapy , Inflammatory Bowel Diseases/prevention & control , Intestines/microbiology , Microbiota/immunology , Animals , Autoimmunity , Crohn Disease/pathology , Diet , Disease Progression , Dysbiosis , Epigenesis, Genetic , Food , Homeostasis , Humans , Immunity, Mucosal , Intestinal Mucosa/immunology
13.
Clin Exp Med ; 17(3): 351-369, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27655445

ABSTRACT

Hedgehog (Hh) signaling is essential for intestinal homeostasis and has been associated with inflammation and tissue repair. We hypothesized that Hh signaling could affect the inflammatory process in inflammatory bowel disease (IBD). For this purpose, colon specimens from the inflamed and non-inflamed mucosa of 15 patients with Crohn's disease (CD), 15 with ulcerative colitis, and 15 controls were analyzed by immunohistochemistry and real-time PCR. The production and modulation of cytokines were measured by ELISA from culture explants. Apoptosis was assessed by TUNEL and caspase-3 activity assays. Chemotaxis was evaluated using a transwell system. Primary human intestinal and skin fibroblasts were used for analyzing migration and BrdU incorporation. Hh proteins were generally expressed at the superficial epithelium, and a marked reduction was observed in CD. In the lamina propria, Gli-1 predominantly co-localized with vimentin- and alpha-smooth muscle actin-positive cells, with lower levels observed in CD. In colon explants, Hh stimulation resulted in reduction, while blockade increased, TNF α, IL-17, and TGF ß levels. Apoptotic rates were higher in inflamed samples, and they increased after Hh blockade. Levels of Gli-1 mRNA were negatively correlated with caspase-3 activity. Hh blockade increased chemoattraction of monocytes. Primary fibroblasts incorporated more BrdU, but migrated less after Hh blockade. These results suggest that Hh signaling provides a negative feedback to the lamina propria, down-regulating inflammatory cytokines, and inhibiting leukocyte migration and fibroblast proliferation, while favoring fibroblast migration. Therefore, Hh signaling is strongly implicated in the pathogenesis of intestinal inflammation, and it may represent a novel therapeutic target for IBD.


Subject(s)
Colon/pathology , Hedgehog Proteins/metabolism , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/physiopathology , Mucous Membrane/pathology , Signal Transduction , Adult , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
14.
Life Sci ; 189: 29-38, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28912045

ABSTRACT

The intestinal microbiota is critical for mammalian immune system development and homeostasis. Sulfate-reducing bacteria (SRB) are part of the normal gut microbiota, but their increased levels may contribute to colitis development, likely in association with hydrogen sulfide (H2S) production. Here, we investigated the effects of SRB in the gut immune response in germ-free mice, and in experimental colitis. After 7days of colonization with Desulfovibrio indonesiensis or with a human SRB consortium (from patients with colitis), germ-free mice exhibited alterations in the colonic architecture, with increased cell infiltration in the lamina propria. SRB colonization upregulated the Th17 and Treg profiles of cytokine production/cell activation, in T cells from mesenteric lymph nodes. These alterations were more pronounced in mice colonized with the human SRB consortium, although D. indonesiensis colonization produced higher levels of H2S. Importantly, the colon of C57BL/6 mice with colitis induced by TNBS or oxazolone had increased SRB colonization, and the administration of D. indonesiensis to mice with TNBS-induced colitis clearly exacerbated the alterations in colonic architecture observed in the established disease, and also increased mouse weight loss. We conclude that SRB contribute to immune response activation in the gut and play an important role in colitis development.


Subject(s)
Colitis/pathology , Desulfovibrio/metabolism , Inflammation/pathology , Sulfates/metabolism , Animals , Colitis/immunology , Disease Models, Animal , Female , Humans , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxazolone/toxicity , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Trinitrobenzenesulfonic Acid/toxicity , Weight Loss
15.
Biomed Res Int ; 2014: 218493, 2014.
Article in English | MEDLINE | ID: mdl-25126549

ABSTRACT

Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn's disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases.


Subject(s)
Apoptosis/genetics , Autophagy/genetics , Inflammatory Bowel Diseases/genetics , Necrosis/genetics , Animals , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Mice , Signal Transduction/genetics
16.
Inflamm Bowel Dis ; 20(3): 444-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412990

ABSTRACT

BACKGROUND: Extracellular nucleotides released in conditions of cell stress alert the immune system from tissue injury or inflammation. We hypothesized that the P2X7 receptor (P2X7-R) could regulate key elements in inflammatory bowel disease pathogenesis. METHODS: Colonoscopy samples obtained from patients with Crohn's disease (CD), ulcerative colitis, and controls were used to analyze P2X7-R expression by RT and real-time PCR, immunohistochemistry, and confocal microscopy. Inflammatory response was determined by the levels of cytokines by enzyme-linked immunosorbent assay in cultures of intestinal explants. Apoptosis was determined by the TUNEL assay. P2X7-R C57BL/6 mice were treated with trinitrobenzene sulfonic acid or dextran sulfate sodium (DSS) for inducing colitis. RESULTS: P2X7-R was expressed in higher levels in inflamed CD epithelium and lamina propria, where it colocalizes more with dendritic cells and macrophages. Basal levels of P2X7-R mRNA were higher in CD inflamed mucosa compared with noninflamed CD and controls and were upregulated after interferon-γ in controls. Apoptotic rates were higher in CD epithelium and lamina propria compared with ulcerative colitis and controls. Levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-17 were higher, whereas IL-10 was lower in CD compared with controls. Levels of tumor necrosis factor-α-α and interleukin-1ß increased after adenosine-triphosphate and decreased after KN62 treatment in CD. P2X7-R animals did not develop trinitrobenzene sulfonic acid or DSS colitis. CONCLUSIONS: The upregulation of P2X7-R in CD inflamed mucosa is consistent with the involvement of purinoceptors in inflammation and apoptosis. These observations may implicate purinergic signaling in the pathogenesis of intestinal inflammation, and the P2X7-R may represent a novel therapeutic target in CD.


Subject(s)
Colitis, Ulcerative/pathology , Crohn Disease/pathology , Intestinal Mucosa/metabolism , Receptors, Purinergic P2X7/physiology , Adenosine Triphosphate/metabolism , Adolescent , Adult , Animals , Apoptosis , Blotting, Western , Case-Control Studies , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Colonoscopy , Crohn Disease/genetics , Crohn Disease/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Follow-Up Studies , Humans , Interferon-gamma/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Young Adult
17.
PLoS One ; 7(9): e45332, 2012.
Article in English | MEDLINE | ID: mdl-23028941

ABSTRACT

The Hedgehog (Hh) pathway is involved in embryogenesis and physiologic processes including cell survival and proliferation. We used the HT-29 and other human colon carcinoma cell lines to investigate Hh signaling and biological functions in colonic epithelial cells. HT-29 cells were cultured under different conditions and exposed to various stimuli. The expression of Hh pathway components and related genes and proteins were assessed by real-time PCR and immunofluorescence. Viability, apoptosis and cell proliferation were measured by the MTT assay, Annexin-V/7-AAD staining and BrdU uptake, respectively. Chemokines production was measured by ELISA in culture supernatants. Indian and Sonic Hh mRNA levels and the downstream transcription factors Gli-1 and Gli-2 increased following treatment with Hh agonists and butyrate, but decreased upon exposure to cyclopamine or GANT61. BMP4 and BMP7 expression increased after stimulation with Hh agonists. Gli-1 protein expression increased after Hh agonists and decreased following cyclopamine. Exposure to Hh agonists promoted ß-catenin reduction and subcellular redistribution. Levels of IL-8 and MCP-1 decreased upon exposure to Hh agonists compared to Hh antagonists, LPS, IFN-γ or EGF. Monocyte chemotaxis decreased upon exposure to supernatants of HT-29 cells treated with Shh compared to Hh antagonists, LPS and IFN-γ. Cellular incorporation of BrdU and cell viability decreased following Hh blockade. Hh agonists abrogated the anti-CD95 induced apoptosis. Hh pathway is a key controller of colon cancer cells, as demonstrated by its effect in dampening inflammatory signals and antagonizing apoptosis. The differential expression of Hh components may underlie abnormalities in the local immune response and in epithelial barrier integrity, with potential homeostatic implications for the development of colonic inflammation and malignancies.


Subject(s)
Colonic Neoplasms/metabolism , Hedgehog Proteins/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Butyrates/pharmacology , Cell Survival/drug effects , Cell Survival/genetics , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Colonic Neoplasms/genetics , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , HT29 Cells , Hedgehog Proteins/agonists , Hedgehog Proteins/genetics , Humans , Interleukin-8/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Veratrum Alkaloids/pharmacology , Zinc Finger Protein GLI1 , Zinc Finger Protein Gli2 , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL