Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(4): 984-997.e24, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388455

ABSTRACT

Immune checkpoint inhibitors (ICIs) produce durable responses in some melanoma patients, but many patients derive no clinical benefit, and the molecular underpinnings of such resistance remain elusive. Here, we leveraged single-cell RNA sequencing (scRNA-seq) from 33 melanoma tumors and computational analyses to interrogate malignant cell states that promote immune evasion. We identified a resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion. The program is expressed prior to immunotherapy, characterizes cold niches in situ, and predicts clinical responses to anti-PD-1 therapy in an independent cohort of 112 melanoma patients. CDK4/6-inhibition represses this program in individual malignant cells, induces senescence, and reduces melanoma tumor outgrowth in mouse models in vivo when given in combination with immunotherapy. Our study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Melanoma/immunology , Protein Kinase Inhibitors/therapeutic use , T-Lymphocytes/immunology , Tumor Escape , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunotherapy/methods , Male , Melanoma/drug therapy , Melanoma/therapy , Mice , Mice, Inbred C57BL , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
2.
Cell ; 167(2): 397-404.e9, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27667683

ABSTRACT

Antibody blockade of the inhibitory CTLA-4 pathway has led to clinical benefit in a subset of patients with metastatic melanoma. Anti-CTLA-4 enhances T cell responses, including production of IFN-γ, which is a critical cytokine for host immune responses. However, the role of IFN-γ signaling in tumor cells in the setting of anti-CTLA-4 therapy remains unknown. Here, we demonstrate that patients identified as non-responders to anti-CTLA-4 (ipilimumab) have tumors with genomic defects in IFN-γ pathway genes. Furthermore, mice bearing melanoma tumors with knockdown of IFN-γ receptor 1 (IFNGR1) have impaired tumor rejection upon anti-CTLA-4 therapy. These data highlight that loss of the IFN-γ signaling pathway is associated with primary resistance to anti-CTLA-4 therapy. Our findings demonstrate the importance of tumor genomic data, especially IFN-γ related genes, as prognostic information for patients selected to receive treatment with immune checkpoint therapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Interferon-gamma/genetics , Melanoma/drug therapy , Receptors, Interferon/genetics , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cytokines/immunology , Gene Knockdown Techniques , Humans , Ipilimumab , Melanoma/genetics , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Mice , Mice, Inbred C57BL , Skin Neoplasms/genetics , T-Lymphocytes/immunology , Interferon gamma Receptor
3.
Nature ; 592(7852): 138-143, 2021 04.
Article in English | MEDLINE | ID: mdl-33731925

ABSTRACT

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Subject(s)
Antigens, Bacterial/analysis , Antigens, Bacterial/immunology , Bacteria/immunology , HLA Antigens/immunology , Melanoma/immunology , Melanoma/microbiology , Peptides/analysis , Peptides/immunology , Antigen Presentation , Bacteria/classification , Bacteria/genetics , Cell Line, Tumor , Coculture Techniques , HLA Antigens/analysis , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/pathology , Neoplasm Metastasis/immunology , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Lancet Oncol ; 23(9): 1156-1166, 2022 09.
Article in English | MEDLINE | ID: mdl-35934010

ABSTRACT

BACKGROUND: Few standard treatment options are available for patients with metastatic sarcomas. We did this trial to evaluate the efficacy, safety, and changes in the tumour microenvironment for durvalumab, an anti-PD-L1 drug, and tremelimumab, an anti-CTLA-4 drug, across multiple sarcoma subtypes. METHODS: In this single-centre phase 2 trial, done at The University of Texas MD Anderson Cancer Center (Houston, TX USA), patients aged 18 years or older with advanced or metastatic sarcoma with an Eastern Cooperative Oncology Group performance status of 0 or 1 who had received at least one previous line of systemic therapy were enrolled in disease subtype-specific groups (liposarcoma, leiomyosarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma, synovial sarcoma, osteosarcoma, alveolar soft-part sarcoma, chordoma, and other sarcomas). Patients received 1500 mg intravenous durvalumab and 75 mg intravenous tremelimumab for four cycles, followed by durvalumab alone every 4 weeks for up to 12 months. The primary endpoint was progression-free survival at 12 weeks in the intention-to-treat population (all patients who received at least one dose of treatment). Safety was also analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02815995, and is completed. FINDINGS: Between Aug 17, 2016, and April 9, 2018, 62 patients were enrolled, of whom 57 (92%) received treatment and were included in the intention-to-treat population. With a median follow-up of 37·2 months (IQR 1·8-10·1), progression-free survival at 12 weeks was 49% (95% CI 36-61). 21 grade 3-4 treatment-related adverse events were reported, the most common of which were increased lipase (four [7%] of 57 patients), colitis (three [5%] patients), and pneumonitis (three [5%] patients). Nine (16%) patients had a treatment related serious adverse event. One patient had grade 5 pneumonitis and colitis. INTERPRETATION: The combination of durvalumab and tremelimumab is an active treatment regimen for advanced or metastatic sarcoma and merits evaluation in specific subsets in future trials. FUNDING: AstraZeneca.


Subject(s)
Bone Neoplasms , Colitis , Osteosarcoma , Pneumonia , Sarcoma, Alveolar Soft Part , Soft Tissue Neoplasms , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bone Neoplasms/drug therapy , Humans , Osteosarcoma/drug therapy , Sarcoma, Alveolar Soft Part/drug therapy , Soft Tissue Neoplasms/pathology , Tumor Microenvironment
5.
Proc Natl Acad Sci U S A ; 116(5): 1692-1697, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30635425

ABSTRACT

Immune checkpoint therapy (ICT) has transformed cancer treatment in recent years; however, treatment response is not uniform across tumor types. The tumor immune microenvironment plays a critical role in determining response to ICT; therefore, understanding the differential immune infiltration between ICT-sensitive and ICT-resistant tumor types will help to develop effective treatment strategies. We performed a comprehensive analysis of the immune tumor microenvironment of an ICT-sensitive tumor (melanoma, n = 44) and an ICT-resistant tumor (pancreatic cancer, n = 67). We found that a pancreatic tumor has minimal to moderate infiltration of CD3, CD4, and CD8 T cells; however, the immune infiltrates are predominantly present in the stromal area of the tumor and are excluded from tumoral area compared with melanoma, where the immune infiltrates are primarily present in the tumoral area. Metastatic pancreatic ductal adenocarcinomas (PDACs) had a lower infiltration of total T cells compared with resectable primary PDACs, suggesting that metastatic PDACs have poor immunogenicity. Further, a significantly higher number of CD68+ macrophages and VISTA+ cells (also known as V-domain immunoglobulin suppressor of T cell activation) were found in the pancreatic stromal area compared with melanoma. We identified VISTA as a potent inhibitory checkpoint that is predominantly expressed on CD68+ macrophages on PDACs. These data suggest that VISTA may be a relevant immunotherapy target for effective treatment of patients with pancreatic cancer.


Subject(s)
B7 Antigens/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/metabolism , Pancreatic Neoplasms/metabolism , Adenocarcinoma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Humans , Immunotherapy/methods , Lymphocyte Activation/physiology , Tumor Microenvironment/physiology
6.
Cancer Immunol Immunother ; 70(4): 1101-1113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33123754

ABSTRACT

Although immunotherapy has achieved impressive durable clinical responses, many cancers respond only temporarily or not at all to immunotherapy. To find novel, targetable mechanisms of resistance to immunotherapy, patient-derived melanoma cell lines were transduced with 576 open reading frames, or exposed to arrayed libraries of 850 bioactive compounds, prior to co-culture with autologous tumor-infiltrating lymphocytes (TILs). The synergy between the targets and TILs to induce apoptosis, and the mechanisms of inhibiting resistance to TILs were interrogated. Gene expression analyses were performed on tumor samples from patients undergoing immunotherapy for metastatic melanoma. Finally, the effect of inhibiting the top targets on the efficacy of immunotherapy was investigated in multiple preclinical models. Aurora kinase was identified as a mediator of melanoma cell resistance to T-cell-mediated cytotoxicity in both complementary screens. Aurora kinase inhibitors were validated to synergize with T-cell-mediated cytotoxicity in vitro. The Aurora kinase inhibition-mediated sensitivity to T-cell cytotoxicity was shown to be partially driven by p21-mediated induction of cellular senescence. The expression levels of Aurora kinase and related proteins were inversely correlated with immune infiltration, response to immunotherapy and survival in melanoma patients. Aurora kinase inhibition showed variable responses in combination with immunotherapy in vivo, suggesting its activity is modified by other factors in the tumor microenvironment. These data suggest that Aurora kinase inhibition enhances T-cell cytotoxicity in vitro and can potentiate antitumor immunity in vivo in some but not all settings. Further studies are required to determine the mechanism of primary resistance to this therapeutic intervention.


Subject(s)
Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Drug Resistance, Neoplasm/immunology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , T-Lymphocytes, Cytotoxic/transplantation , Animals , Apoptosis , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Cell Proliferation , Female , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/therapy , Mice , Prognosis , Survival Rate , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
7.
J Surg Oncol ; 124(4): 699-703, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34057733

ABSTRACT

BACKGROUND AND OBJECTIVES: Adoptive T-cell therapies (ACTs) using expansion of tumor-infiltrating lymphocyte (TIL) populations are of great interest for advanced malignancies, with promising response rates in trial settings. However, postoperative outcomes following pulmonary TIL harvest have not been widely documented, and surgeons may be hesitant to operate in the setting of widespread disease. METHODS: Patients who underwent pulmonary TIL harvest were identified, and postoperative outcomes were studied, including pulmonary, cardiovascular, infectious, and wound complications. RESULTS: 83 patients met inclusion criteria. Pulmonary TIL harvest was undertaken primarily via a thoracoscopy with a median operative blood loss and duration of 30 ml and 65 min, respectively. The median length of stay was 2 days. Postoperative events were rare, occurring in only five (6%) patients, including two discharged with a chest tube, one discharged with oxygen, one episode of urinary retention, and one blood transfusion. No reoperations occurred. The median time from TIL harvest to ACT infusion was 37 days. CONCLUSIONS: Pulmonary TIL harvest is safe and feasible, without major postoperative events in our cohort. All patients were able to receive intended ACT infusion without delays. Therefore, thoracic surgeons should actively participate in ongoing ACT trials and aggressively seek to enroll patients on these protocols.


Subject(s)
Immunotherapy, Adoptive/methods , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Pulmonary Surgical Procedures/methods , Adult , Feasibility Studies , Female , Follow-Up Studies , Humans , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Male , Melanoma/immunology , Melanoma/pathology , Middle Aged , Postoperative Care , Prognosis , Prospective Studies
8.
Eur J Immunol ; 49(12): 2245-2251, 2019 12.
Article in English | MEDLINE | ID: mdl-31532833

ABSTRACT

The pervasive use of therapeutic antibodies targeting programmed cell death protein 1 (PD-1) to boost anti-tumor immunity has positioned this approach to become the standard-of-care for some solid tumor malignancies. However, little is known as to how blockade of PD-1 may alter the function or phenotype of tumor-infiltrating lymphocytes (TIL). We used our ongoing Phase II clinical trial of pembrolizumab for patients with rare solid tumors from various types (NCT02721732) with matched core biopsies taken at baseline and after initial dose of anti-PD-1 (15-21 days post-dose) to elucidate this question. One fresh core needle biopsy was used to propagate TIL ex vivo to analyze phenotype and function using flow cytometry in both CD8+ and CD4+ TIL populations. An enriched CTLA-4 expression in the CD4+ TIL population was observed in TIL expanded from the on-treatment samples compared to TIL expanded from the matched baseline (n = 22, p = 0.0007) but was not observed in patients who experienced tumor regression. Impact on functionality was evaluated by measuring secretion of 65 soluble factors by expanded TIL from 26 patients at baseline and on-treatment. The CD8+ TIL population demonstrated a diminished cytokine secretion profile post-pembrolizumab. Overall, our study assesses the ramifications of one dose of anti-PD-1 on TIL in rare solid tumor types.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , B7-H1 Antigen , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Lymphocytes, Tumor-Infiltrating , Neoplasm Proteins , Neoplasms , Rare Diseases , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , CTLA-4 Antigen/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Rare Diseases/drug therapy , Rare Diseases/immunology , Rare Diseases/pathology
9.
Cancer Immunol Immunother ; 68(11): 1747-1757, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31602489

ABSTRACT

BACKGROUND: Immunotherapy has become a powerful treatment option for several solid tumor types. The presence of tumor-infiltrating lymphocytes (TIL) is correlated with better prognosis in ovarian cancer, pointing at the possibility to benefit from harnessing their anti-tumor activity. This preclinical study explores the feasibility of adoptive cell therapy (ACT) with TIL using an improved culture method. METHODS: TIL from high-grade serous ovarian cancer were cultured using a combination of IL-2 with agonistic antibodies targeting 4-1BB and CD3. The cells were phenotyped using flow cytometry in the fresh tissue and after expansion. Tumor reactivity was assessed against HLA-matched ovarian cancer cell lines via IFN-γ ELISPOT. RESULTS: Ovarian cancer is highly infiltrated with CD8+ TIL that are preferentially and robustly expanded with the addition of the agonistic antibodies. With a 95% success rate, the TIL are grown to ≥ 100 × 106 cells in 2-3 weeks without over differentiation. In addition, the CD8+ TIL grown with this method showed HLA-restricted tumor recognition. CONCLUSIONS: These results indicate the viability of TIL ACT for refractory ovarian cancer by allowing for the large expansion of anti-tumor TIL in a short time and consistent manner.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chemoradiotherapy , Cystadenocarcinoma, Serous/therapy , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Ovarian Neoplasms/therapy , Salvage Therapy , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/secondary , Cytotoxicity, Immunologic/immunology , Female , Follow-Up Studies , Humans , Lymphocyte Activation , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Prognosis
10.
BMC Med ; 14(1): 168, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27776519

ABSTRACT

BACKGROUND: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. METHODS: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. RESULTS: PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R2 = 0.73 and R2 = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). CONCLUSIONS: The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/therapy , Immunotherapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Melanoma/genetics , Melanoma/therapy , Mutation , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Adenocarcinoma/immunology , Adenocarcinoma of Lung , Algorithms , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cohort Studies , Exome , Female , Humans , Immunotherapy, Adoptive/methods , Ipilimumab , Lung Neoplasms/immunology , Male , Melanoma/immunology , Middle Aged , Skin Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Burden/genetics , Melanoma, Cutaneous Malignant
11.
Trends Immunol ; 34(2): 90-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23031830

ABSTRACT

Manipulating the immune system in order to induce clinically relevant responses against cancer is a longstanding goal. Interventions to enhance tumor-specific immunity through vaccination, sustaining effector T cell activation, or increasing the numbers of tumor-specific T cells using ex vivo expansion, have all resulted in clinical successes. Here, we examine recent clinical advances and major ongoing studies in the field of cancer immunotherapy. Single agents have so far benefited a limited proportion of patients, and future studies combining different types of immunotherapies and other therapeutic modalities, such as drugs against specific signaling pathways driving cancer cell growth, are needed to pave the way for the development of effective anticancer treatments causing durable responses.


Subject(s)
Cancer Vaccines/therapeutic use , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Animals , Antibodies/immunology , Antibodies/therapeutic use , Cancer Vaccines/immunology , Clinical Trials as Topic , Humans , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
12.
Cancer Treat Res ; 167: 371-416, 2016.
Article in English | MEDLINE | ID: mdl-26601872

ABSTRACT

The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient's cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.


Subject(s)
Melanoma/therapy , Adoptive Transfer , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cancer Vaccines/immunology , Humans , Melanoma/secondary , Molecular Targeted Therapy , Precision Medicine , T-Lymphocytes/immunology
13.
J Immunol ; 189(11): 5476-84, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23105141

ABSTRACT

PR1 is a HLA-A2-restricted peptide that has been targeted successfully in myeloid leukemia with immunotherapy. PR1 is derived from the neutrophil granule proteases proteinase 3 (P3) and neutrophil elastase (NE), which are both found in the tumor microenvironment. We recently showed that P3 and NE are taken up and cross-presented by normal and leukemia-derived APCs, and that NE is taken up by breast cancer cells. We now extend our findings to show that P3 and NE are taken up and cross-presented by human solid tumors. We further show that PR1 cross-presentation renders human breast cancer and melanoma cells susceptible to killing by PR1-specific CTLs (PR1-CTL) and the anti-PR1/HLA-A2 Ab 8F4. We also show PR1-CTL in peripheral blood from patients with breast cancer and melanoma. Together, our data identify cross-presentation as a novel mechanism through which cells that lack endogenous expression of an Ag become susceptible to therapies that target cross-presented Ags and suggest PR1 as a broadly expressed tumor Ag.


Subject(s)
Antigens, Neoplasm/immunology , Breast Neoplasms/therapy , Immunotherapy , Leukocyte Elastase/immunology , Melanoma/therapy , Myeloblastin/immunology , Skin Neoplasms/therapy , Antibodies/pharmacology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cross-Priming , Female , HLA-A2 Antigen/immunology , Humans , Leukocyte Elastase/chemistry , Melanoma/immunology , Melanoma/pathology , Molecular Targeted Therapy , Myeloblastin/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured
14.
Nat Cancer ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750245

ABSTRACT

Chimeric antigen receptor (CAR) T cells used for the treatment of B cell malignancies can identify T cell subsets with superior clinical activity. Here, using infusion products of individuals with large B cell lymphoma, we integrated functional profiling using timelapse imaging microscopy in nanowell grids with subcellular profiling and single-cell RNA sequencing to identify a signature of multifunctional CD8+ T cells (CD8-fit T cells). CD8-fit T cells are capable of migration and serial killing and harbor balanced mitochondrial and lysosomal volumes. Using independent datasets, we validate that CD8-fit T cells (1) are present premanufacture and are associated with clinical responses in individuals treated with axicabtagene ciloleucel, (2) longitudinally persist in individuals after treatment with CAR T cells and (3) are tumor migrating cytolytic cells capable of intratumoral expansion in solid tumors. Our results demonstrate the power of multimodal integration of single-cell functional assessments for the discovery and application of CD8-fit T cells as a T cell subset with optimal fitness in cell therapy.

15.
J Immunother Cancer ; 12(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38309721

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has shown efficacy in metastatic melanoma, non-small cell lung cancer, and other solid tumors. Our preclinical work demonstrated more robust CD8 predominant TIL production when agonistic anti-4-1BB and CD3 antibodies were used in early ex vivo TIL culture. METHODS: Patients with treatment-refractory metastatic colorectal (CRC), pancreatic (PDAC) and ovarian (OVCA) cancers were eligible. Lymphodepleting chemotherapy was followed by infusion of ex vivo expanded TIL, manufactured at MD Anderson Cancer Center with IL-2 and agonistic stimulation of CD3 and 4-1BB (urelumab). Patients received up to six doses of high-dose IL-2 after TIL infusion. Primary endpoint was evaluation of objective response rate at 12 weeks using Response Evaluation Criteria in Solid Tumors version 1.1 with secondary endpoints including disease control rate (DCR), duration of response, progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 17 patients underwent TIL harvest and 16 were treated on protocol (NCT03610490), including 8 CRC, 5 PDAC, and 3 OVCA patients. Median age was 57.5 (range 33-70) and 50% were females. Median number of lines of prior therapy was 2 (range 1-8). No responses were observed at 12 weeks. Ten subjects achieved at least one stable disease (SD) assessment for a DCR of 62.5% (95% CI 35.4% to 84.8%). Best response included prolonged SD in a patient with PDAC lasting 17 months. Median PFS and OS across cohorts were 2.53 months (95% CI 1.54 to 4.11) and 18.86 months (95% CI 4.86 to NR), respectively. Grade 3 or higher toxicities attributable to therapy were seen in 14 subjects (87.5%; 95% CI 61.7% to 98.4%). Infusion product analysis showed the presence of effector memory cells with high expression of CD39 irrespective of tumor type and low expression of checkpoint markers. CONCLUSIONS: TIL manufactured with assistance of 4-1BB and CD3 agonism is feasible and treatment is associated with no new safety signals. While no responses were observed, a significant portion of patients achieved SD suggesting early/partial immunological effect. Further research is required to identify factors associated with resistance and functionally enhance T cells for a more effective therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Pancreatic Ductal , Colorectal Neoplasms , Lung Neoplasms , Ovarian Neoplasms , Pancreatic Neoplasms , Humans , Female , Middle Aged , Lymphocytes, Tumor-Infiltrating , Carcinoma, Non-Small-Cell Lung/drug therapy , Interleukin-2/therapeutic use , Lung Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Ovarian Epithelial/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
16.
Cancer Cell ; 41(7): 1207-1221.e12, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37327789

ABSTRACT

The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.


Subject(s)
B7-H1 Antigen , Melanoma , Mice , Animals , B7-H1 Antigen/genetics , T-Lymphocytes , CD58 Antigens/chemistry , CD58 Antigens/metabolism , Melanoma/genetics , Melanoma/metabolism , Lymphocyte Activation
17.
Clin Cancer Res ; 29(1): 154-164, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36166093

ABSTRACT

PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.


Subject(s)
Melanoma , Neoplasms, Second Primary , Humans , Risk Factors , DNA Copy Number Variations , Obesity/complications , Overweight , Melanoma/genetics , Melanoma/complications , Body Mass Index
18.
Methods Mol Biol ; 2435: 43-71, 2022.
Article in English | MEDLINE | ID: mdl-34993939

ABSTRACT

Adoptive cell transfer (ACT) of in vitro expanded tumor-infiltrating lymphocytes (TIL) for the treatment of patients with advanced stages of metastatic melanoma remains one of the most beneficial therapies eliciting long-lasting responses. Methods and protocols used to expand TIL have evolved over time, utilizing different culture devices and other tools, to streamline and maximize the end product in both numbers and quality. Summarized in this chapter are the latest protocols used in the TIL program at MDACC.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Melanoma , CD8-Positive T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Melanoma/therapy
19.
NAR Cancer ; 4(4): zcac038, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36518525

ABSTRACT

Genetic screens are widely exploited to develop novel therapeutic approaches for cancer treatment. With recent advances in single-cell technology, single-cell CRISPR screen (scCRISPR) platforms provide opportunities for target validation and mechanistic studies in a high-throughput manner. Here, we aim to establish scCRISPR platforms which are suitable for immune-related screens involving multiple cell types. We integrated two scCRISPR platforms, namely Perturb-seq and CROP-seq, with both in vitro and in vivo immune screens. By leveraging previously generated resources, we optimized experimental conditions and data analysis pipelines to achieve better consistency between results from high-throughput and individual validations. Furthermore, we evaluated the performance of scCRISPR immune screens in determining underlying mechanisms of tumor intrinsic immune regulation. Our results showed that scCRISPR platforms can simultaneously characterize gene expression profiles and perturbation effects present in individual cells in different immune screen conditions. Results from scCRISPR immune screens also predict transcriptional phenotype associated with clinical responses to cancer immunotherapy. More importantly, scCRISPR screen platforms reveal the interactive relationship between targeting tumor intrinsic factors and T cell-mediated antitumor immune response which cannot be easily assessed by bulk RNA-seq. Collectively, scCRISPR immune screens provide scalable and reliable platforms to elucidate molecular determinants of tumor immune resistance.

20.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35882447

ABSTRACT

BACKGROUND: The correlation between elevated T-cell infiltration and improved survival of ovarian cancer (OvCa) patients suggests that endogenous tumor-infiltrating lymphocytes (TIL) possess some degree of antitumor activity that can be harnessed for OvCa immunotherapy. We previously optimized a protocol for ex vivo OvCa TIL expansion for adoptive cell therapy, which is now being tested in a clinical trial at our institution (NCT03610490). Building on this success, we embarked on genetic modification of OvCa TIL to overcome key immunosuppressive factors present in the tumor microenvironment. Here, we present the preclinical optimization of CRISPR/Cas9-mediated knockout of the TGF-ß receptor 2 (TGFBR2) in patient-derived OvCa TIL. METHODS: OvCa TILs were generated from four patients' tumor samples obtained at surgical resection and subjected to CRISPR/Cas9-mediated knockout of TGFBR2 before undergoing a rapid expansion protocol. TGFBR2-directed gRNAs were comprehensively evaluated for their TGFBR2 knockout efficiency and off-target activity. Furthermore, the impact of TGFBR2 knockout on TIL expansion, function, and downstream signaling was assayed. RESULTS: TGFBR2 knockout efficiencies ranging from 59±6% to 100%±0% were achieved using 5 gRNAs tested in four independent OvCa TIL samples. TGFBR2 knockout TIL were resistant to immunosuppressive TGF-ß signaling as evidenced by a lack of SMAD phosphorylation, a lack of global transcriptional changes in response to TGF-ß stimulation, equally strong secretion of proinflammatory cytokines in the presence and absence of TGF-ß, and improved cytotoxicity in the presence of TGF-ß. CRISPR-modification itself did not alter the ex vivo expansion efficiency, immunophenotype, nor the TCR clonal diversity of OvCa TIL. Importantly for clinical translation, comprehensive analysis of CRISPR off-target effects revealed no evidence of off-target activity for our top two TGFBR2-targeting gRNAs. CONCLUSIONS: CRISPR/Cas9-mediated gene knockout is feasible and efficient in patient-derived OvCa TIL using clinically-scalable methods. We achieved efficient and specific TGFBR2 knockout, yielding an expanded OvCa TIL product that was resistant to the immunosuppressive effects of TGF-ß. This study lays the groundwork for clinical translation of CRISPR-modified TIL, providing opportunities for engineering more potent TIL therapies not only for OvCa treatment, but for the treatment of other solid cancers as well.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Receptor, Transforming Growth Factor-beta Type II/genetics , Transforming Growth Factor beta/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL