Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Front Pediatr ; 6: 106, 2018.
Article in English | MEDLINE | ID: mdl-29761093

ABSTRACT

Background: Diagnosis of rare Wilson disease (WD) in pediatric patients is difficult, in particular when hepatic manifestation is absent. Genetic analysis of ATP7B represents the single major determinant of the diagnostic scoring system in WD children having mild symptoms. Objectives: To assess the impact of molecularly expressed ATP7B gene products in order to assist diagnosis of Wilson disease in pediatric patients having a novel mutation and subtle neuropsychiatric disease. Methods: The medical history, clinical presentation, biochemical parameters, and the genetic analysis of ATP7B were determined. Due to ambiguous clinical and biochemical findings and identification of a novel compound ATP7B mutation with unknown disease-causing status, a molecular analysis of the ATP7B gene products in a previously well characterized cell model was performed. Results: The ATP7B variants were transgenically expressed and the respective gene function molecularly characterized. Despite normal mRNA expression, low ATP7B protein expression of the mutants p.L168P and p.S1423N was observed (34.3 ± 8% and 66.0 ± 8%, respectively). Copper exposure did not result in decreased viability of transgenic cells as compared to wild type. Intracellular copper accumulation was reduced (≤47.9 ± 8%) and intracellular protein trafficking was impaired. Conclusion: Our report suggests that functional characterization of novel ATP7B mutants can assist diagnosis; however mild functional impairments of ATP7B variants may hamper the value of such approaches.

2.
Metallomics ; 9(9): 1279-1287, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28805879

ABSTRACT

Copper homeostasis is strictly regulated in mammalian cells. We investigated the adaptation of hepatocytes after long-term copper exposure. Copper-resistant hepatoma HepG2 cell lines lacking ATP7B were generated. Growth, copper accumulation, gene expression, and transport were determined. Hepatocyte-like cells derived from a Wilson disease (WD) patient and the liver of a WD animal model were also studied. The rapidly gained copper resistance was found to be stable, as subculturing of cells in the absence of added copper (weaning) did not restore copper sensitivity. Intracellular copper levels and the expression of MT1 and HSP70 were increased, whereas the expression of CTR1 was reduced. However, the values normalized after weaning. In contrast, downregulation of multi-drug resistance protein 1 (MDR1), encoding P-glycoprotein (P-gp), was shown to be permanent. Calcein assays confirmed the downregulation of MDR1 in the resistant cell lines. MDR1 knockdown by siRNA resulted in increased copper resistance and decreased intracellular copper. Treatment of the resistant cells with verapamil, a known inducer of MDR1, was followed by increased copper-induced toxicity. Downregulation of MDR1 was also observed in hepatocyte-like cells derived from a WD patient after copper exposure. In addition, MDR1 was downregulated in Long-Evans Cinnamon rats when the liver copper was elevated. The results indicate that downregulation of MDR1 is an adaptation of hepatic cells after sustained copper exposure when ATP7B is non-functional. Our data add to the versatile functions of MDR1 in the hepatocyte and may have an impact on the treatment of copper-related diseases, prominently WD.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Copper/pharmacology , Down-Regulation , Hepatocytes/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cells, Cultured , Copper/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Drug Resistance, Neoplasm/genetics , Hep G2 Cells , Hepatocytes/metabolism , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , RNA Interference , Rats, Inbred LEC
SELECTION OF CITATIONS
SEARCH DETAIL