Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Cell ; 73(3): 601-610.e5, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30595438

ABSTRACT

CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , DNA/metabolism , Gene Editing/methods , Pseudomonas Phages/metabolism , Pseudomonas aeruginosa/enzymology , RNA, Guide, Kinetoplastida/metabolism , Temperature , Viral Proteins/metabolism , Binding, Competitive , CRISPR-Associated Protein 9/antagonists & inhibitors , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/ultrastructure , Cryoelectron Microscopy , DNA/genetics , DNA/ultrastructure , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/ultrastructure , Structure-Activity Relationship , Viral Proteins/genetics , Viral Proteins/ultrastructure
2.
Nature ; 577(7789): 244-248, 2020 01.
Article in English | MEDLINE | ID: mdl-31819262

ABSTRACT

All viruses require strategies to inhibit or evade the immune pathways of cells that they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid immune pathways that target nucleic acids, such as CRISPR-Cas and restriction-modification systems, to replicate efficiently1. Here we show that jumbo phage ΦKZ segregates its DNA from immunity nucleases of its host, Pseudomonas aeruginosa, by constructing a proteinaceous nucleus-like compartment. ΦKZ is resistant to many immunity mechanisms that target DNA in vivo, including two subtypes of CRISPR-Cas3, Cas9, Cas12a and the restriction enzymes HsdRMS and EcoRI. Cas proteins and restriction enzymes are unable to access the phage DNA throughout the infection, but engineering the relocalization of EcoRI inside the compartment enables targeting of the phage and protection of host cells. Moreover, ΦKZ is sensitive to Cas13a-a CRISPR-Cas enzyme that targets RNA-probably owing to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.


Subject(s)
CRISPR-Associated Proteins/metabolism , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/virology , Viral Proteins/chemistry , CRISPR-Cas Systems , DNA, Viral/chemistry , Genome, Viral , Pseudomonas Phages/chemistry
3.
Nat Methods ; 17(12): 1183-1190, 2020 12.
Article in English | MEDLINE | ID: mdl-33077967

ABSTRACT

CRISPR-Cas technologies have enabled programmable gene editing in eukaryotes and prokaryotes. However, the leading Cas9 and Cas12a enzymes are limited in their ability to make large deletions. Here, we used the processive nuclease Cas3, together with a minimal Type I-C Cascade-based system for targeted genome engineering in bacteria. DNA cleavage guided by a single CRISPR RNA generated large deletions (7-424 kilobases) in Pseudomonas aeruginosa with near-100% efficiency, while Cas9 yielded small deletions and point mutations. Cas3 generated bidirectional deletions originating from the programmed site, which was exploited to reduce the P. aeruginosa genome by 837 kb (13.5%). Large deletion boundaries were efficiently specified by a homology-directed repair template during editing with Cascade-Cas3, but not Cas9. A transferable 'all-in-one' vector was functional in Escherichia coli, Pseudomonas syringae and Klebsiella pneumoniae, and endogenous CRISPR-Cas use was enhanced with an 'anti-anti-CRISPR' strategy. P. aeruginosa Type I-C Cascade-Cas3 (PaeCas3c) facilitates rapid strain manipulation with applications in synthetic biology, genome minimization and the removal of large genomic regions.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , DNA Helicases/metabolism , Escherichia coli Proteins/metabolism , Gene Editing/methods , Genetic Engineering/methods , Base Sequence/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Escherichia coli/genetics , Genome, Bacterial/genetics , Klebsiella pneumoniae/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas syringae/genetics , Sequence Deletion/genetics
4.
J Virol ; 92(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30135120

ABSTRACT

Spanins are bacteriophage lysis proteins responsible for disruption of the outer membrane, the final step of Gram-negative host lysis. The absence of spanins results in a terminal phenotype of fragile spherical cells. The phage T1 employs a unimolecular spanin gp11 that has an N-terminal lipoylation signal and a C-terminal transmembrane domain. Upon maturation and localization, gp11 ends up as an outer membrane lipoprotein with a C-terminal transmembrane domain embedded in the inner membrane, thus connecting both membranes as a covalent polypeptide chain. Unlike the two-component spanins encoded by most of the other phages, including lambda, the unimolecular spanins have not been studied extensively. In this work, we show that the gp11 mutants lacking either membrane localization signal were nonfunctional and conferred a partially dominant phenotype. Translation from internal start sites within the gp11 coding sequence generated a shorter product which exhibited a negative regulatory effect on gp11 function. Fluorescence spectroscopy time-lapse videos of gp11-GFP expression showed gp11 accumulated in distinct punctate foci, suggesting localized clusters assembled within the peptidoglycan meshwork. In addition, gp11 was shown to mediate lysis in the absence of holin and endolysin function when peptidoglycan density was depleted by starvation for murein precursors. This result indicates that the peptidoglycan is a negative regulator of gp11 function. This supports a model in which gp11 acts by fusing the inner and outer membranes, a mode of action analogous to but mechanistically distinct from that proposed for the two-component spanin systems.IMPORTANCE Spanins have been proposed to fuse the cytoplasmic and outer membranes during phage lysis. Recent work with the lambda spanins Rz-Rz1, which are similar to class I viral fusion proteins, has shed light on the functional domains and requirements for two-component spanin function. Here we report, for the first time, a genetic and biochemical approach to characterize unimolecular spanins, which are structurally and mechanistically different from two-component spanins. Considering similar predicted secondary structures within the ectodomains, unimolecular spanins can be regarded as a prokaryotic version of type II viral membrane fusion proteins. This study not only adds to our understanding of regulation of phage lysis at various levels but also provides a prokaryotic genetically tractable platform for interrogating class II-like membrane fusion proteins.


Subject(s)
Bacteriolysis/genetics , Endopeptidases/genetics , Siphoviridae/genetics , Viral Proteins/genetics , Escherichia coli/virology , Membrane Fusion/physiology , Membrane Proteins/genetics , Protein Structure, Secondary
5.
Mol Microbiol ; 88(1): 35-47, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23387988

ABSTRACT

The λ Rz and Rz1 proteins are the subunits of the spanin complex, required for the disruption of the outer membrane during host lysis. Rz, the inner membrane or i-spanin, has a largely alpha-helical periplasmic domain, whereas Rz1, the outer membrane or o-spanin, has a 25% proline content with no predicted secondary structure. We report that both Rz and Rz1 accumulate as homodimers covalently linked by intermolecular disulfide bonds involving all three Cys residues, two in Rz and one in Rz1. Moreover, of these three intermolecular disulfides, spanin function requires the presence of at least one of the two linkages nearest the Rz-Rz1 C-terminal interaction domains; i.e. either the Rz1-Rz1 disulfide or the distal Rz-Rz disulfide link. In a dsbC host, but not in dsbA or dsbA dsbC hosts, formation of the covalent homodimers of Rz is severely reduced and outer membrane disruption is significantly delayed, suggesting that the spanin pathway normally proceeds through DsbA-mediated formation of an intramolecular disulfide in Rz. In contrast, efficient formation of the Rz1-Rz1 disulfide requires DsbA. Finally, Dsb-independent formation of the covalent homodimer of either subunit requires the presence of the other, presumably as a template for close apposition of the thiols.


Subject(s)
Bacteriophage lambda/metabolism , Disulfides/metabolism , Protein Multimerization , Protein Subunits/metabolism , Viral Proteins/metabolism , Alleles , Amino Acid Sequence , Amino Acid Substitution/genetics , Bacteriolysis , Cysteine/metabolism , Kinetics , Models, Biological , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Phenotype , Protein Subunits/chemistry , Viral Proteins/chemistry
6.
bioRxiv ; 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37425882

ABSTRACT

Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. Here, we use Dynamic Light Scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-year-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web-application (Phage-ELF) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and non-destructive tool for quality control of phage preparations in academic and commercial settings.

7.
PNAS Nexus ; 2(12): pgad406, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111822

ABSTRACT

Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-y-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web application (Phage-Estimator of Lytic Function) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and nondestructive tool for quality control of phage preparations in academic and commercial settings.

8.
BMC Genomics ; 13: 542, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23050599

ABSTRACT

BACKGROUND: The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. RESULTS: Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell's replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. CONCLUSIONS: Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus.


Subject(s)
Caulobacter crescentus/virology , Genomics , Siphoviridae/genetics , Amino Acid Sequence , Base Sequence , Caulobacter crescentus/cytology , DNA Packaging , DNA Replication , DNA, Viral/biosynthesis , DNA, Viral/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Genome, Viral/genetics , Molecular Sequence Data , Phylogeny , Protein Biosynthesis , Siphoviridae/physiology , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
9.
Nat Microbiol ; 7(12): 1956-1966, 2022 12.
Article in English | MEDLINE | ID: mdl-36316452

ABSTRACT

Jumbo phages such as Pseudomonas aeruginosa ФKZ have potential as antimicrobials and as a model for uncovering basic phage biology. Both pursuits are currently limited by a lack of genetic engineering tools due to a proteinaceous 'phage nucleus' structure that protects from DNA-targeting CRISPR-Cas tools. To provide reverse-genetics tools for DNA jumbo phages from this family, we combined homologous recombination with an RNA-targeting CRISPR-Cas13a enzyme and used an anti-CRISPR gene (acrVIA1) as a selectable marker. We showed that this process can insert foreign genes, delete genes and add fluorescent tags to genes in the ФKZ genome. Fluorescent tagging of endogenous gp93 revealed that it is ejected with the phage DNA while deletion of the tubulin-like protein PhuZ surprisingly had only a modest impact on phage burst size. Editing of two other phages that resist DNA-targeting CRISPR-Cas systems was also achieved. RNA-targeting Cas13a holds great promise for becoming a universal genetic editing tool for intractable phages, enabling the systematic study of phage genes of unknown function.


Subject(s)
Bacteriophages , Bacteriophages/genetics , CRISPR-Cas Systems , Gene Editing , Genetic Engineering , RNA
10.
Cell Host Microbe ; 26(3): 325-335.e5, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31492655

ABSTRACT

Bacteriophages are abundant within the human gastrointestinal tract, yet their interactions with gut bacteria remain poorly understood, particularly with respect to CRISPR-Cas immunity. Here, we show that the type I-C CRISPR-Cas system in the prevalent gut Actinobacterium Eggerthella lenta is transcribed and sufficient for specific targeting of foreign and chromosomal DNA. Comparative analyses of E. lenta CRISPR-Cas systems across (meta)genomes revealed 2 distinct clades according to cas sequence similarity and spacer content. We assembled a human virome database (HuVirDB), encompassing 1,831 samples enriched for viral DNA, to identify protospacers. This revealed matches for a majority of spacers, a marked increase over other databases, and uncovered "hyper-targeted" phage sequences containing multiple protospacers targeted by several E. lenta strains. Finally, we determined the positional mismatch tolerance of observed spacer-protospacer pairs. This work emphasizes the utility of merging computational and experimental approaches for determining the function and targets of CRISPR-Cas systems.


Subject(s)
Bacteria/virology , Bacteriophages/genetics , CRISPR-Cas Systems , Gastrointestinal Tract/microbiology , Actinobacteria/virology , Bacteria/genetics , Base Sequence , DNA, Bacterial/analysis , DNA, Viral/analysis , Databases, Genetic , Genome, Bacterial , Genome, Viral , Humans , Metagenomics , Microbiota/genetics , Sequence Analysis, DNA
11.
Science ; 362(6411): 240-242, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30190308

ABSTRACT

Bacterial CRISPR-Cas systems protect their host from bacteriophages and other mobile genetic elements. Mobile elements, in turn, encode various anti-CRISPR (Acr) proteins to inhibit the immune function of CRISPR-Cas. To date, Acr proteins have been discovered for type I (subtypes I-D, I-E, and I-F) and type II (II-A and II-C) but not other CRISPR systems. Here, we report the discovery of 12 acr genes, including inhibitors of type V-A and I-C CRISPR systems. AcrVA1 inhibits a broad spectrum of Cas12a (Cpf1) orthologs-including MbCas12a, Mb3Cas12a, AsCas12a, and LbCas12a-when assayed in human cells. The acr genes reported here provide useful biotechnological tools and mark the discovery of acr loci in many bacteria and phages.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Endonucleases/antagonists & inhibitors , Gene Editing , Moraxella/genetics , Pseudomonas/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Computational Biology/methods , Humans
12.
Biotechnol Biofuels ; 8: 132, 2015.
Article in English | MEDLINE | ID: mdl-26339290

ABSTRACT

BACKGROUND: Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance of bacteria contaminating commercial ethanol fermentations, and to evaluate the potential of anti-LAB bacteriophages in controlling production losses. RESULTS: Bacterial populations in 27 corn mash samples collected from nine different commercial plants were determined by pyrosequencing of 16S rRNA amplicons. The results showed that the most abundant bacteria (>50 % of total population) in 24 of the 27 samples included LAB genera such as Lactobacillus, Streptococcus, Lactococcus, Weissella, Enterococcus, and Pediococcus. Lactobacillus was identified as the most prevalent genus at all fermentation stages in all plants, accounting for between 2.3 and 93.7 % of each population and constituting the major genus (>50 %) in nine samples from five plants and the most abundant genus in five other samples. Lactobacillus species, including L. delbrueckii, L. fermentum, L. mucosae, and L. reuteri were the most well-represented species. Two bacteriophages that target L. fermentum strains from ethanol plants, vB_LfeS_EcoSau and vB_LfeM_EcoInf (EcoSau and EcoInf), were isolated and characterized as a siphophage and a myophage, respectively. Analysis of the 31,703 bp genome of EcoSau revealed its similarity to the P335-like phage group, and the 106,701 bp genome of phage EcoInf was determined to be a novel phage type despite its distant relationship to the SPO1-like phages. Addition of phages EcoSau and EcoInf to L. fermentum-contaminated corn mash fermentation models restored the yields of ethanol and reduced levels of residual glucose, lactic acid, and acetic acid to that comparable to the infection-free control. CONCLUSIONS: This study provides detailed insight into the microbiota contaminating commercial ethanol fermentations, and highlights the abundance of LAB, especially L. delbrueckii, L. fermentum, L. mucosae, and L. reuteri, in the process. This study suggests that phages with broad coverage of major LAB species can be applied directly to corn mash for antibiotic-free control of contamination in the ethanol fermentation industry.

SELECTION OF CITATIONS
SEARCH DETAIL