ABSTRACT
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Subject(s)
Selenium , Animals , Humans , Homeostasis/physiology , Hormones , Selenium/metabolism , Selenoproteins/metabolismABSTRACT
Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.
Subject(s)
Adipocytes, Brown/metabolism , Selenoproteins/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Biosynthetic Pathways , Cells, Cultured , Cold-Shock Response , Energy Metabolism , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , RNA, Transfer, Amino Acid-Specific/genetics , Uncoupling Protein 1/geneticsABSTRACT
The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.
Subject(s)
Body Weight/drug effects , Diet, High-Fat , Leptin/pharmacology , Neurons/metabolism , RNA, Transfer, Amino Acid-Specific/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Carbon Dioxide/metabolism , Energy Metabolism , Female , Glucose Tolerance Test , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/pathology , Obesity/veterinary , RNA, Transfer, Amino Acid-Specific/metabolism , Signal TransductionABSTRACT
The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.
Subject(s)
Selenoproteins/classification , Selenoproteins/genetics , Humans , Terminology as TopicABSTRACT
Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. SIGNIFICANCE STATEMENT: Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy.
Subject(s)
Brain/metabolism , Lyases/metabolism , Neurodevelopmental Disorders/genetics , Selenium/metabolism , Selenoprotein P/metabolism , Age Factors , Animals , Brain/drug effects , Brain/pathology , Castration , Dizocilpine Maleate/pharmacology , Epilepsy, Reflex/genetics , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glutamate Decarboxylase/metabolism , Lyases/genetics , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Nerve Tissue Proteins/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/prevention & control , Selenoprotein P/genetics , Sex Factors , Transcription Factors/metabolismABSTRACT
Selenoproteins contain the unique amino acid selenocysteine (Sec), which is encoded by the triplet UGA. Since UGA also serves as a stop codon, it has been postulated that selenoprotein mRNAs are targeted for degradation by the nonsense-mediated mRNA decay pathway (NMD). Several reports have observed a hierarchy of selenoprotein mRNA expression when selenium (Se) is limiting, whereby the abundance of certain transcripts decline while others do not. We sought to investigate the role of NMD in this hierarchical response that selenoprotein mRNAs exhibit to environmental Se status. Selenoprotein mRNAs were categorized as being predicted sensitive or resistant to NMD based on the requirements held by the current model. About half of the selenoprotein transcriptome was predicted to be sensitive to NMD and showed significant changes in mRNA abundance in response to cellular Se status. The other half that was predicted to be resistant to NMD did not respond to Se status. RNA immunoprecipitation with essential NMD factor UPF1 revealed that the mRNAs that were the most sensitive to Se status were also the most enriched on UPF1 during Se deficiency. Furthermore, depletion of SMG1, the kinase responsible for UPF1 phosphorylation and NMD activation, abrogated the decline in transcript abundance of Se-responsive transcripts. Lastly, mRNA decay rates of Se-responsive transcripts were altered upon the addition of Se to resemble the slower decay rates of nonresponsive transcripts. Taken together, these results present novel evidence in support of a crucial role for the NMD pathway in regulating selenoprotein mRNA levels when Se is limiting.
Subject(s)
Nonsense Mediated mRNA Decay , RNA, Messenger/metabolism , Selenium/deficiency , Selenoproteins/genetics , Cell Line , Gene Knockdown Techniques , Humans , Phosphatidylinositol 3-Kinases/genetics , Protein Serine-Threonine Kinases , RNA Helicases , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Selenium/metabolism , Trans-Activators/metabolismABSTRACT
Sepp1 supplies selenium to tissues via receptor-mediated endocytosis. Mice, rats, and humans have 10 selenocysteines in Sepp1, which are incorporated via recoding of the stop codon, UGA. Four isoforms of rat Sepp1 have been identified, including full-length Sepp1 and three others, which terminate at the second, third, and seventh UGA codons. Previous studies have shown that the longer Sepp1 isoforms bind to the low density lipoprotein receptor apoER2, but the mechanism remains unclear. To identify the essential residues for apoER2 binding, an in vitro Sepp1 binding assay was developed using different Sec to Cys substituted variants of Sepp1 produced in HEK293T cells. ApoER2 was found to bind the two longest isoforms. These results suggest that Sepp1 isoforms with six or more selenocysteines are taken up by apoER2. Furthermore, the C-terminal domain of Sepp1 alone can bind to apoER2. These results indicate that apoER2 binds to the Sepp1 C-terminal domain and does not require the heparin-binding site, which is located in the N-terminal domain. Site-directed mutagenesis identified three residues of Sepp1 that are necessary for apoER2 binding. Sequential deletion of extracellular domains of apoER2 surprisingly identified the YWTD ß-propeller domain as the Sepp1 binding site. Finally, we show that apoER2 missing the ligand-binding repeat region, which can result from cleavage at a furin cleavage site present in some apoER2 isoforms, can act as a receptor for Sepp1. Thus, longer isoforms of Sepp1 with high selenium content interact with a binding site distinct from the ligand-binding domain of apoER2 for selenium delivery.
Subject(s)
Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Selenium/metabolism , Selenoprotein P/metabolism , Amino Acid Sequence , Animals , Endocytosis , Female , HEK293 Cells , Humans , Ligands , Male , Mice , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Selenocysteine/metabolism , Selenoprotein P/chemistry , Sequence Alignment , Substrate SpecificityABSTRACT
Selenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor. Upon feeding a selenium-deficient diet, mice lacking ApoER2 or Sepp1 develop severe neurological dysfunction and exhibit widespread brainstem neurodegeneration, indicating an important role for ApoER2-mediated Sepp1 uptake in normal brain function. Selenocysteine lyase (Scly) is an enzyme that plays an important role in selenium homeostasis, in that it catalyzes the decomposition of selenocysteine and allows selenium to be recycled for additional selenoprotein synthesis. We previously reported that constitutive deletion of Scly results in neurological deficits only when mice are challenged with a low selenium diet. To gain insight into the relationship between Sepp1 and Scly in selenium metabolism, we created novel transgenic mice constitutively lacking both genes (Scly(-/-)Sepp1(-/-)) and characterized the neurobehavioral phenotype. We report that deletion of Scly in conjunction with Sepp1 further aggravates the phenotype of Sepp1(-/-) mice, as these mice needed supraphysiological selenium supplementation to survive, and surviving mice exhibited impaired motor coordination, audiogenic seizures, and brainstem neurodegeneration. These findings provide the first in vivo evidence that Scly and Sepp1 work cooperatively to maintain selenoprotein function in the mammalian brain.
Subject(s)
Behavior, Animal , Brain/metabolism , Lyases/metabolism , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/metabolism , Seizures/metabolism , Selenoprotein P/metabolism , Animals , Brain/pathology , Lyases/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Seizures/genetics , Seizures/pathology , Selenocysteine/genetics , Selenocysteine/metabolism , Selenoprotein P/geneticsABSTRACT
In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the dopamine D1 receptor signaling pathway. These findings suggest Ca(2+) -mediated neurotoxicity owing to over-expression of calcium channels.
Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/biosynthesis , Methamphetamine/pharmacology , Up-Regulation/drug effects , Up-Regulation/physiology , Cell Line, Tumor , Humans , Time FactorsABSTRACT
Selenium is an essential trace element that is co-translationally incorporated into selenoproteins in the form of the 21st amino acid, selenocysteine. This class of proteins largely functions in oxidation-reduction reactions and is critically involved in maintaining proper redox balance essential to health. Selenoprotein M (SelM) is a thioredoxin-like endoplasmic reticulum-resident protein that is highly expressed in the brain and possesses neuroprotective properties. In this study, we first assessed the regional pattern of SelM expression in the mouse brain to provide insights into the potential functional implications of this protein in physiology and behavior. Next, we generated transgenic mice with a targeted deletion of the SelM gene and subjected them to a battery of neurobehavioral tests to evaluate motor coordination, locomotion, and cognitive function in comparison with wild-type controls. Finally, these mice were tested for several measures of metabolic function and body composition. Our results show that SelM knock-out (KO) mice display no deficits in measures of motor coordination and cognitive function but exhibit increased weight gain, elevated white adipose tissue deposition, and diminished hypothalamic leptin sensitivity. These findings suggest that SelM plays an important role in the regulation of body weight and energy metabolism.
Subject(s)
Cognition , Energy Metabolism , Gene Deletion , Hypothalamus/metabolism , Nerve Tissue Proteins/metabolism , Obesity/metabolism , Selenoproteins/metabolism , Animals , Behavior, Animal , Body Weight/genetics , Hypothalamus/pathology , Hypothalamus/physiopathology , Leptin/genetics , Leptin/metabolism , Locomotion/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Obesity/genetics , Obesity/pathology , Obesity/physiopathology , Selenoproteins/geneticsABSTRACT
BACKGROUND: Fish consumption is common among the cultures of Hawaii, and given public health attention to mercury exposure in pregnancy, it is important to better understand patterns of fish consumption and mercury in pregnancy. This study examined the influence of maternal fish consumption during pregnancy on umbilical cord mercury (Hg) concentrations in a multiethnic cohort of women in Hawaii. METHODS: This secondary analysis of a prospective cohort pilot study examined antenatal seafood consumption and neonatal outcomes in Hawaii. The first 100 eligible women who consented were enrolled. After delivery, umbilical cord blood and a dietary survey were obtained. RESULTS: Most women (86%) consumed seafood during the month prior to delivery. Overall, 9% of women consumed more than the recommended limit of 12 ounces/week. Seafood consumption varied significantly by ethnicity and income, with 30% of poor women consuming more than the recommended limit. Seafood consumption did not vary by age or education.Umbilical cord blood Hg levels were 5 µg/L or more in 44% of women. Filipina were significantly less likely to have elevated Hg levels compared with non- Filipina (p < .05). Mercury levels did not vary by other demographic characteristics.Women reporting consumption exceeding 12 ounces fish per week were significantly more likely to have cord blood Hg levels of 5 µg/L or more, but mean Hg concentrations were not significantly higher (6.1 ± 3.3 v 5.0 ± 3.7). The odds ratio for elevated Hg, however, was significant among seafood-consumers compared with non-consumers (5.7; 95% confidence interval: 1.2, 27.1). CONCLUSIONS: Despite Environmental Protection Agency (EPA) guidelines, a significant portion of pregnant women consumed more than the recommended amount of seafood, which was associated with race and income. Further, almost half of study participants had cord blood Hg concentrations at or exceeding 5 µg/L.
Subject(s)
Diet/ethnology , Feeding Behavior/ethnology , Fetal Blood/chemistry , Income , Mercury/analysis , Seafood , Adolescent , Adult , Female , Hawaii , Humans , Japan/ethnology , Pacific Islands/ethnology , Philippines/ethnology , Pregnancy , Young AdultABSTRACT
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in â¼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase â¼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Subject(s)
Mercury , Selenium , Adult , Animals , Child , Humans , Female , Pregnancy , Child Health , Placenta/metabolism , Seafood/analysis , Fishes/metabolism , Selenocysteine/metabolism , CysteineABSTRACT
Aberrant activation of the stress-response system in early life can alter neurodevelopment and cause long-term neurological changes. Activation of the hypothalamic-pituitary-adrenal axis releases glucocorticoids into the bloodstream, to help the organism adapt to the stressful stimulus. Elevated glucocorticoid levels can promote the accumulation of reactive oxygen species, and the brain is highly susceptible to oxidative stress. The essential trace element selenium is obtained through diet, is used to synthesize antioxidant selenoproteins, and can mitigate glucocorticoid-mediated oxidative damage. Glucocorticoids can impair antioxidant enzymes in the brain, and could potentially influence selenoprotein expression. We hypothesized that exposure to high levels of glucocorticoids would disrupt selenoprotein expression in the developing brain. C57 wild-type dams of recently birthed litters were fed either a moderate (0.25 ppm) or high (1 ppm) selenium diet and administered corticosterone (75 µg/ml) via drinking water during postnatal days 1 to 15, after which the brains of the offspring were collected for western blot analysis. Glutathione peroxidase 1 and 4 levels were increased by maternal corticosterone exposure within the prefrontal cortex, hippocampus, and hypothalamus of offspring. Additionally, levels of the glucocorticoid receptor were decreased in the hippocampus and selenoprotein W was elevated in the hypothalamus by corticosterone. Maternal consumption of a high selenium diet independently decreased glucocorticoid receptor levels in the hippocampus of offspring of both sexes, as well as in the prefrontal cortex of female offspring. This study demonstrates that early life exposure to excess glucocorticoid levels can alter selenoprotein levels in the developing brain.
ABSTRACT
Profound health disparities are widespread among Native Hawaiians, other Pacific Islanders, and Filipinos in Hawai'i. Efforts to reduce and eliminate health disparities are limited by a shortage of investigators trained in addressing the genetic, socio economic, and environmental factors that contribute to disparities. In this conference proceedings report from the 2022 RCMI Consortium National Conference, we describe our mentoring program, with an emphasis on community-engaged research. Elements include our encouragement of a team-science, customized Pilot Projects Program (PPP), a Mentoring Bootcamp, and a mentoring support network. During 2017-2022, we received 102 PPP preproposals. Of these, 45 (48%) were invited to submit full proposals, and 22 (19%) were awarded (8 basic biomedical, 7 clinical, 7 behavioral). Eighty-three percent of awards were made to early-career faculty (31% ethnic minority, 72% women). These 22 awards generated 77 related publications; 84 new grants were submitted, of which 31 were awarded with a resultant return on investment of 5.9. From 5 to 11 investigators were supported by PPP awards each year. A robust usage of core services was observed. Our descriptive report (as part of a scientific conference session on RCMI specialized centers) focuses on a mentoring vehicle and shows how it can support early-stage investigators in pursuing careers in health disparities research.
Subject(s)
Biomedical Research , Ethnicity , Humans , Female , Male , Pilot Projects , Minority Groups , Hawaii , Mentors , Program DevelopmentABSTRACT
The use of glucocorticoid medications is known to cause metabolic side effects such as overeating, excess weight gain, and insulin resistance. The hypothalamus, a central regulator of feeding behavior and energy expenditure, is highly responsive to glucocorticoids, and it has been proposed that it plays a role in glucocorticoid-induced metabolic defects. Glucocorticoids can alter the expression and activity of antioxidant enzymes and promote the accumulation of reactive oxygen species. Recent evidence indicates that selenium can counter the effects of glucocorticoids, and selenium is critical for proper hypothalamic function. This study sought to determine whether selenium is capable of protecting hypothalamic cells from dysfunction caused by glucocorticoid exposure. We treated mHypoE-44 mouse hypothalamic cells with corticosterone to study the effects on cellular physiology and the involvement of selenium. We found that corticosterone administration rendered cells more vulnerable to endoplasmic reticulum stress and the subsequent impairment of insulin signaling. Supplementing the cell culture media with additional selenium alleviated endoplasmic reticulum stress and promoted insulin signaling. These findings implicate a protective role of selenium against chronic glucocorticoid-induced hypothalamic dysfunction.
ABSTRACT
Selenoprotein P (Sepp1), a glycoprotein rich in selenium, is thought to function in selenium transport throughout the body. The sepp1 gene locus potentially produces three alternative transcripts that differ only in their 5' untranslated regions (5'UTRs) and not in their protein coding regions, as indicated by transcript information in genomic databases. Here we investigated the distribution, relative expression, and biological significance of these transcript variants. We confirmed the expression of Sepp1 transcript variants using PCR and sequencing. Using 5'-RACE, we identified multiple 5'-termini upstream from three different splice donor sites, and a single splice acceptor site for exon 2. We found regional and temporal changes in variant expression in select adult and neonate murine tissue and brain regions. Distribution of variants in heart and kidney varied with stage of development. Notably, the Sepp1b variant was localized specifically to the hippocampus in brain. Targeted silencing of individual variants using RNAi demonstrated the biological importance for all transcript variants in cell viability. Additionally, we determined that the Sepp1b variant is a specific target for the miR-7 microRNA by means of its unique 5'UTR structure. Our results emphasize the importance of non-coding transcript variations as a regulatory means for Sepp1 expression in different tissues and stages of development. The presence of a variant localized in the hippocampus and regulated by a microRNA may have implications for the known deficits in synaptic function caused by genetic deletion of Sepp1.
Subject(s)
Alternative Splicing/genetics , RNA, Untranslated/genetics , Selenoprotein P/genetics , Selenoprotein P/metabolism , Animals , Brain/metabolism , Cell Line, Tumor , Gene Expression , Ion Transport , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Protein Isoforms , RNA Interference , RNA Splice Sites , RNA, Small Interfering , Selenium/metabolism , Sequence Analysis, RNA , Untranslated Regions/geneticsABSTRACT
Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.
Subject(s)
Selenium , Animals , Glutathione Peroxidase , Neurons , Selenium/physiology , Selenoprotein P , Selenoproteins/geneticsABSTRACT
Selenoprotein H is a redox-sensing DNA binding protein that upregulates genes involved in antioxidant responses. Given the known links between oxidative stress and heavy metals, we investigated the potential for regulation of selenoprotein H by metals. In silico analysis of the selenoprotein H genes from nine species reveals multiple predicted metal response elements (MREs). To validate MRE function, we investigated the effects of zinc or cadmium addition and metal-responsive transcription factor 1 (MTF-1) knockout on selenoprotein H mRNA levels. Chromatin immunoprecipitation was used to directly assess physical binding of the transcription factor to MREs in the human and mouse selenoprotein H genes. The results reported herein show that selenoprotein H is a newly identified target for MTF-1. Further, whereas nearly all prior studies of MREs focused on those located in promoters, we demonstrate binding of MTF-1 to MREs located downstream of the transcription start sites in the human and murine selenoprotein H genes. Finally, we identified MREs in downstream sequences in 15 additional MTF-1 regulated genes lacking promoter MREs, and demonstrated MTF-1 binding in three of these genes. This regulation via sequences downstream of promoters highlights a new direction for identifying previously unrecognized target genes for MTF-1.
Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Selenoproteins/genetics , Transcription Factors/physiology , Up-Regulation , Amnion/physiology , Animals , Cell Line , Cell Line, Tumor , DNA Primers , DNA-Binding Proteins/drug effects , DNA-Binding Proteins/metabolism , Genes, Reporter , Humans , Kidney , Luciferases/genetics , Macaca , Metals, Heavy/toxicity , Mice , Oxidative Stress , Reverse Transcriptase Polymerase Chain Reaction , Selenoproteins/metabolism , Transcription Factors/drug effects , Transcription Factors/genetics , Transcription, Genetic , Transcription Factor MTF-1ABSTRACT
Monocyte chemoattractant protein-1 (MCP-1) is an inflammatory chemokine up-regulated in obese subjects, contributing to the development of type 2 diabetes. The present study investigated the inhibitory effect of an ethanol-water extract from bamboo (BEX, Phyllostachys edulis) on the blood concentration of MCP-1. C57BL/6J mice were fed a standard diet or a high-fat diet with or without the BEX supplement (11 g dry mass/17 000 kJ) for 6 months. A total of ten mice were used in each group. Body weight and food consumption were measured weekly. After euthanisation, the weight of visceral fat and circulating MCP-1 concentration were measured. In comparison with the standard control group, the high-fat control group had increased body weight, abdominal fat storage and serum MCP-1 concentration by 60 % (P < 0·001), 266 % (P < 0·001) and 180 % (P < 0·01), respectively. In comparison with the high-fat control group, the high-fat BEX group showed a 3 % decrease in body weight (P < 0·01), 24 % decrease in mesenteric fat depot (P < 0·01) and 49 % decrease in serum MCP-1 concentration (P < 0·05). The present study suggests that the BEX supplement in the high-fat diet ameliorates elevated MCP-1 concentrations in the blood, and whether this is related to modulated endocrine properties of the visceral fat is to be studied.
Subject(s)
Chemokine CCL2/blood , Diet, High-Fat/adverse effects , Dietary Supplements , Plant Extracts/administration & dosage , Poaceae/chemistry , Animals , Intra-Abdominal Fat/anatomy & histology , Intra-Abdominal Fat/drug effects , Male , Mice , Mice, Inbred C57BL , Organ Size/drug effectsABSTRACT
The stress response is an important tool in an organism's ability to properly respond to adverse environmental conditions in order to survive. Intense acute or chronic elevation of glucocorticoids, a class of stress hormone, can have deleterious neurological effects, however, including memory impairments and emotional disturbances. In recent years, the protective role of the antioxidant micronutrient selenium against the negative impact of externally applied stress has begun to come to light. In this review, we will discuss the effects of stress on the brain, with a focus on glucocorticoid action in the hippocampus and cerebral cortex, and emerging evidence of an ability of selenium to normalize neurological function in the context of various stress and glucocorticoid exposure paradigms in rodent models.