Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 386(24): 2295-2302, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35704481

ABSTRACT

Lifelong immunosuppression is required for allograft survival after kidney transplantation but may not ultimately prevent allograft loss resulting from chronic rejection. We developed an approach that attempts to abrogate immune rejection and the need for post-transplantation immunosuppression in three patients with Schimke immuno-osseous dysplasia who had both T-cell immunodeficiency and renal failure. Each patient received sequential transplants of αß T-cell-depleted and CD19 B-cell-depleted haploidentical hematopoietic stem cells and a kidney from the same donor. Full donor hematopoietic chimerism and functional ex vivo T-cell tolerance was achieved, and the patients continued to have normal renal function without immunosuppression at 22 to 34 months after kidney transplantation. (Funded by the Kruzn for a Kure Foundation.).


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Kidney Transplantation , Nephrotic Syndrome , Osteochondrodysplasias , Primary Immunodeficiency Diseases , Arteriosclerosis/genetics , Arteriosclerosis/therapy , Graft Rejection/prevention & control , Humans , Immunologic Deficiency Syndromes/therapy , Kidney/physiology , Kidney Transplantation/adverse effects , Nephrotic Syndrome/genetics , Nephrotic Syndrome/therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/therapy , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/therapy , Pulmonary Embolism/genetics , Pulmonary Embolism/therapy , Transplantation Conditioning/methods
2.
Cytotherapy ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38970612

ABSTRACT

Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent ß-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.

3.
Cytotherapy ; 26(7): 660-671, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38483362

ABSTRACT

There is lack of guidance for immune monitoring and infection prevention after administration of ex vivo genetically modified hematopoietic stem cell therapies (GMHSCT). We reviewed current infection prevention practices as reported by providers experienced with GMHSCTs across North America and Europe, and assessed potential immunologic compromise associated with the therapeutic process of GMHSCTs described to date. Based on these assessments, and with consensus from members of the International Society for Cell & Gene Therapy (ISCT) Stem Cell Engineering Committee, we propose risk-adapted recommendations for immune monitoring, infection surveillance and prophylaxis, and revaccination after receipt of GMHSCTs. Disease-specific and GMHSCT-specific considerations should guide decision making for each therapy.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Genetic Therapy/methods , Hematopoietic Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Infections/therapy , Infections/etiology
4.
Cytotherapy ; 25(5): 463-471, 2023 05.
Article in English | MEDLINE | ID: mdl-36710227

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and supportive care technologies improve, this life-saving treatment may be offered to more and more patients. With the development of new preparative regimens, expanded alternative donor availability, and graft manipulation techniques, there are many options when choosing the best regimen for patients. Herein the authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft manipulation strategies for patients with non-malignant disorders undergoing HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Tissue Donors , Transplantation, Homologous , Transplantation Conditioning , Graft vs Host Disease/etiology
5.
Cytotherapy ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38054912

ABSTRACT

Allogeneic hemopoietic cell transplantation remains the goal of therapy for high-risk acute myeloid leukemia (AML). However, treatment failure in the form of leukemia relapse or severe graft-versus-host disease remains a critical area of unmet need. Recently, significant progress has been made in the cell therapy-based interventions both before and after transplant. In this review, the Stem Cell Engineering Committee of the International Society for Cell and Gene Therapy summarizes the literature regarding the identification of high risk in AML, treatment approaches before transplant, optimal transplant platforms and measures that may be taken after transplant to ideally prevent, or, if need be, treat AML relapse. Although some strategies remain in the early phases of clinical investigation, they are built on progress in pre-clinical research and cellular engineering techniques that are already improving outcomes for children and adults with high-risk malignancies.

6.
Cytotherapy ; 25(6): 578-589, 2023 06.
Article in English | MEDLINE | ID: mdl-36941149

ABSTRACT

BACKGROUND AIMS: Allogeneic hematopoietic stem cell transplant is a curative approach for many malignant and non-malignant hematologic conditions. Despite advances in its prevention and treatment, the morbidity and mortality related to graft-versus-host disease (GVHD) remains. The mechanisms by which currently used pharmacologic agents impair the activation and proliferation of potentially alloreactive T cells reveal pathways essential for the detrimental activities of these cell populations. Importantly, these same pathways can be important in mediating the graft-versus-leukemia effect in recipients transplanted for malignant disease. This knowledge informs potential roles for cellular therapies such as mesenchymal stromal cells and regulatory T cells in preventing or treating GVHD. This article reviews the current state of adoptive cellular therapies focused on GVHD treatment. METHODS: We conducted a search for scientific literature in PubMed® and ongoing clinical trials in clinicaltrial.gov with the keywords "Graft-versus-Host Disease (GVHD)," "Cellular Therapies," "Regulatory T cells (Tregs)," "Mesenchymal Stromal (Stem) Cells (MSCs)," "Natural Killer (NK) Cells," "Myeloid-derived suppressor cells (MDSCs)," and "Regulatory B-Cells (B-regs)." All the published and available clinical studies were included. RESULTS: Although most of the existing clinical data focus on cellular therapies for GVHD prevention, there are observational and interventional clinical studies that explore the potential for cellular therapies to be safe modalities for GVHD treatment while maintaining the graft-versus-leukemia effect in the context of malignant diseases. However, there are multiple challenges that limit the broader use of these approaches in the clinical scenario. CONCLUSIONS: There are many ongoing clinical trials to date with the promise to expand our actual knowledge on the role of cellular therapies for GVHD treatment in an attempt to improve GVHD-related outcomes in the near future.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Neoplasms , Humans , Graft vs Host Disease/therapy , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous , Leukemia/therapy , Cell Engineering
7.
Pediatr Blood Cancer ; 70(8): e30429, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37243390

ABSTRACT

Cytomegalovirus retinitis (CMVR) following hematopoietic stem cell transplantation (HCT) for a primary immunodeficiency is a rare but highly morbid condition with potential irreversible consequences despite optimal antiviral pharmacotherapy. Viral-specific T cells (VSTs) pose a promising and safe approach eradicating intractable viral disease. We describe the case of a 21-month-old male with Wiskott-Aldrich syndrome (WAS) and CMVR post HCT with sustained long-term virologic and clinical response after CMV-specific T-cell therapy. This case highlights the need to consider VST as an adjunct upfront strategy in refractory CMVR and for routine ophthalmologic screening and surveillance in high-risk patients post HCT.


Subject(s)
Cytomegalovirus Retinitis , Hematopoietic Stem Cell Transplantation , Humans , Male , Infant , Cytomegalovirus Retinitis/therapy , Cytomegalovirus Retinitis/drug therapy , Antiviral Agents/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Phosphoproteins , T-Lymphocytes
8.
Cytotherapy ; 24(4): 385-392, 2022 04.
Article in English | MEDLINE | ID: mdl-35331394

ABSTRACT

Allogeneic stem cell transplantation is a potentially curative therapy for some malignant and non-malignant disease. There have been substantial advances since the approaches first introduced in the 1970s, and the development of approaches to transplant with HLA incompatible or alternative donors has improved access to transplant for those without a fully matched donor. However, success is still limited by morbidity and mortality from toxicity and imperfect disease control. Here we review our emerging understanding of how reconstitution of effective immunity after allogeneic transplant can protect from these events and improve outcomes. We provide perspective on milestones of immune reconstitution that are easily measured and modifiable.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Cell Engineering , Humans , Transplantation, Homologous
9.
Cytotherapy ; 24(3): 249-261, 2022 03.
Article in English | MEDLINE | ID: mdl-34879990

ABSTRACT

Thalassemia and sickle cell disease (SCD) are the most common monogenic diseases in the world and represent a growing global health burden. Management is limited by a paucity of disease-modifying therapies; however, allogeneic hematopoietic stem cell transplantation (HSCT) and autologous HSCT after genetic modification offer patients a curative option. Allogeneic HSCT is limited by donor selection, morbidity and mortality from transplant conditioning, graft-versus-host disease and graft rejection, whereas significant concerns regarding long-term safety, efficacy and cost limit the broad applicability of gene therapy. Here the authors review current outcomes in allogeneic and autologous HSCT for transfusion-dependent thalassemia and SCD and provide our perspective on issues surrounding accessibility and costs as barriers to offering curative therapy to patients with hereditary hemoglobinopathies.


Subject(s)
Anemia, Sickle Cell , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Hemoglobinopathies , beta-Thalassemia , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Cell Engineering , Genetic Therapy , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hemoglobinopathies/genetics , Hemoglobinopathies/therapy , Humans , Transplantation Conditioning , beta-Thalassemia/genetics , beta-Thalassemia/therapy
10.
Cytotherapy ; 24(9): 884-891, 2022 09.
Article in English | MEDLINE | ID: mdl-35705447

ABSTRACT

Despite recent advances in the field of HSCT, viral infections remain a frequent causeof morbidity and mortality among HSCT recipients. Adoptive transfer of viral specific T cells has been successfully used both as prophylaxis and treatment of viral infections in immunocompromised HSCT recipients. Increasingly, precise risk stratification of HSCT recipients with infectious complications should incorporate not only pretransplant clinical criteria, but milestones of immune reconstitution as well. These factors can better identify those at highest risk of morbidity and mortality and identify a population of HSCT recipients in whom adoptive therapy with viral specific T cells should be considered for either prophylaxis or second line treatment early after inadequate response to first line antiviral therapy. Broadening these approaches to improve outcomes for transplant recipients in countries with limited resources is a major challenge. While the principles of risk stratification can be applied, early detection of viral reactivation as well as treatment is challenging in regions where commercial PCR assays and antiviral agents are not readily available.


Subject(s)
Hematopoietic Stem Cell Transplantation , Virus Diseases , Adoptive Transfer , Antiviral Agents/therapeutic use , Cell Engineering , Genetic Therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Virus Diseases/etiology , Virus Diseases/prevention & control
11.
Pediatr Blood Cancer ; 69(6): e29689, 2022 06.
Article in English | MEDLINE | ID: mdl-35373904

ABSTRACT

INTRODUCTION: Total body irradiation (TBI) is an important component of many conditioning regimens for hematopoietic stem cell transplantation (HSCT), most commonly used in pediatric and adolescent/young adult (AYA) patients. We aimed to evaluate outcomes and toxicities among pediatric and AYA patients treated with TBI utilizing volumetric modulated arc therapy total body irradiation (VMAT-TBI). METHODS: We reviewed pediatric and AYA patients treated with VMAT-TBI at our institution from 2019 to 2021. Data on patient and disease characteristics, treatment details, outcomes and toxicities were collected. Overall survival (OS) and relapse-free survival (RFS) were analyzed using the Kaplan-Meier method. RESULTS: Among 38 patients, 16 (42.1%) were treated with myeloablative regimens and 22 (57.9%) with nonmyeloablative regimens. Median age was 7.2 years (range: 1-27) and median follow-up was 8.7 months (range: 1-21). Lungs Dmean was 7.3 ± 0.3 Gy for myeloablative regimens (range: 6.8-7.8). Kidneys were spared to average mean dose of 71.4 ± 4.8% of prescription dose. Gonadal sparing was achieved for patients treated for nonmalignant diseases to Dmean of 0.7 ± 0.1 Gy. No patient experienced primary graft failure; one (2.6%) experienced secondary graft failure. The most common grade 1-2 acute toxicities were nausea (68.4%) and fatigue (55.3%). Mucositis was the most common grade 3-4 acute toxicity, affecting 39.5% of patients. There were no cases of pneumonitis or nephrotoxicity attributable to TBI. CONCLUSION: VMAT-TBI offers increased ability to spare organs at risk in pediatric and AYA patients undergoing HSCT, with a favorable acute/subacute toxicity profile and excellent disease control.


Subject(s)
Hematopoietic Stem Cell Transplantation , Radiotherapy, Intensity-Modulated , Adolescent , Child , Humans , Neoplasm Recurrence, Local/etiology , Radiotherapy, Intensity-Modulated/adverse effects , Retrospective Studies , Transplantation Conditioning/adverse effects , Transplantation Conditioning/methods , Whole-Body Irradiation/methods , Young Adult
12.
Haematologica ; 106(3): 847-858, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32241852

ABSTRACT

Allogeneic hematopoietic stem cell transplantation is an effective therapy for high-risk leukemias. In children, graft manipulation based on the selective removal of aß T cells and B cells has been shown to reduce the risk of acute and chronic graft-versus-host disease, thus allowing the use of haploidentical donors which expands the population of recipients in whom allogeneic hematopoietic stem cell transplantation can be used. Leukemic relapse, however, remains a challenge. T cells expressing chimeric antigen receptors can potently eliminate leukemia, including those in the central nervous system. We hypothesized that by engineering the donor aß T cells that are removed from the graft by genome editing to express a CD19-specific chimeric antigen receptor, while simultaneously inactivating the T-cell receptor, we could create a therapy that enhances the anti-leukemic efficacy of the stem cell transplant without increasing the risk of graft-versus-host disease. Using genome editing with Cas9 ribonucleoprotein and adeno-associated virus serotype 6, we integrated a CD19-specific chimeric antigen receptor inframe into the TRAC locus. More than 90% of cells lost T-cell receptor expression, while >75% expressed the chimeric antigen receptor. The initial product was further purified with less than 0.05% T-cell receptorpositive cells remaining. In vitro, the chimeric antigen receptor T cells efficiently eliminated target cells and produced high cytokine levels when challenged with CD19+ leukemia cells. In vivo, the gene-modified T cells eliminated leukemia without causing graft-versus-host disease in a xenograft model. Gene editing was highly specific with no evidence of off-target effects. These data support the concept that the addition of aß T-cell-derived, genome-edited T cells expressing CD19-specific chimeric antigen receptors could enhance the anti-leukemic efficacy of aß T-celldepleted haploidentical hematopoietic stem cell transplantation without increasing the risk of graft-versus-host disease.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Receptors, Chimeric Antigen , Antigens, CD19/genetics , Child , Gene Editing , Graft vs Host Disease/prevention & control , Humans , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
13.
Haematologica ; 106(10): 2588-2597, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33054128

ABSTRACT

Type 1 regulatory (Tr1) T cells induced by enforced expression of IL-10 (LV-10) are being developed as a novel treatment for chemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft vs host disease while mediating graft vs leukemia (GvL) effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature. Overlaying the signatures of sensitive and resistant pAML onto the public NCI TARGET pAML dataset revealed that sensitive pAML clustered with M5 monocytic pAML and pAML with MLL rearrangement. Resistant pAML clustered with myelomonocytic leukemias and those bearing the core binding factor translocations inv(16) or t(8;21)(RUNX1-RUNX1T1). Furthermore, resistant pAML upregulated the membrane glycoprotein CD200, which binds to the inhibitory receptor CD200R1 on LV-10 cells. To examine if CD200 expression on target cells can impair LV-10 cell function, we overexpressed CD200 in myeloid leukemia cell lines ordinarily sensitive to LV-10 killing. Indeed, LV-10 cells degranulated less and killed fewer CD200-overexpressing cells compared to controls, indicating that pAML can utilize CD200 expression for immune evasion. Altogether, the majority of pAML are killed by LV-10 cells in vitro, supporting further LV-10 cell development as an innovative cell therapy for pAML.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocytes, Regulatory , Adult , CD4-Positive T-Lymphocytes , Child , Graft vs Leukemia Effect , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Translocation, Genetic
14.
Br J Haematol ; 189(4): 745-750, 2020 05.
Article in English | MEDLINE | ID: mdl-32012224

ABSTRACT

Outcome of 333 children with acute myeloid leukaemia relapsing after a first allogeneic haematopoietic stem cell transplantation was analyzed. Four-year probability of overall survival (4y-pOS) was 14%. 4y-pOS for 122 children receiving a second haematopoietic stem cell transplantation was 31% and 3% for those that did not (P = <0·0001). Achievement of a subsequent remission impacted survival (P = <0·0001). For patients receiving a second transplant survival with or without achieving a subsequent remission was comparable. Graft source (bone marrow vs. peripheral blood stem cells, P = 0·046) and donor choice (matched family vs. matched unrelated donor, P = 0·029) positively impacted survival after relapse. Disease recurrence and non-relapse mortality at four years reached 45% and 22%.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myeloid, Acute/therapy , Transplantation Conditioning/methods , Transplantation, Homologous/methods , Child , Female , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Retrospective Studies , Survival Analysis
15.
J Clin Immunol ; 40(2): 289-298, 2020 02.
Article in English | MEDLINE | ID: mdl-31863244

ABSTRACT

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections, inflammation, and autoimmunity with an impact on health-related quality of life (HRQoL). Few data are available for children, whereas no study has been conducted in adults. Here, we investigated HRQoL and emotional functioning of 19 children and 28 adults enrolled in Italian registry for CGD. PEDsQL and SDQ were used for children and their caregivers, and adults completed the SF-12 questionnaire. Mean scores were compared with norms and with patients affected by chronic diseases. Comparisons were made for CGD patients who underwent or not hematopoietic stem cell transplantation (HSCT). When compared with norms, CGD children exhibited higher difficulties in social/school areas, peer relationship, and conduct/emotional problems (< 5 years of age), as scored by proxies. Differently, CGD adults reported higher difficulties both in mental and physical area than norms. Only for children, clinical status had a damaging effect on psychosocial and school dimensions, whereas age had a negative impact on social areas. No significant difference was observed between patients treated or not with HSCT. When compared with patients affected by chronic diseases, CGD children and adults both displayed fewer physical disabilities. Differently, in mental scale adults scored lower than those with rheumatology diseases and had similar impairment in comparison with patients with diabetes mellitus and cancer. This study emphasized the impact of CGD on HRQoL since infancy and its decline in adulthood, with emotional difficulties occurring early. HRQoL impairment should be considered in clinical picture of CGD and pro-actively assessed and managed by clinicians.


Subject(s)
Granulomatous Disease, Chronic/epidemiology , Immunologic Deficiency Syndromes/epidemiology , Adolescent , Adult , Caregivers , Child , Child, Preschool , Cholestyramine Resin , Female , Granulomatous Disease, Chronic/psychology , Humans , Immunologic Deficiency Syndromes/psychology , Italy/epidemiology , Male , Middle Aged , Psychological Distress , Quality of Life , Registries , Severity of Illness Index , Young Adult
17.
Crit Rev Microbiol ; 46(6): 689-702, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33023358

ABSTRACT

Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Animals , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication
18.
Blood ; 132(24): 2594-2607, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30348653

ABSTRACT

Traditionally, hematopoietic stem cell transplantation (HSCT) from both HLA-matched related and unrelated donors (UD) has been used for treating children with acute leukemia (AL) in need of an allograft. Recently, HLA-haploidentical HSCT after αß T-cell/B-cell depletion (αßhaplo-HSCT) was shown to be effective in single-center studies. Here, we report the first multicenter retrospective analysis of 127 matched UD (MUD), 118 mismatched UD (MMUD), and 98 αßhaplo-HSCT recipients, transplanted between 2010 and 2015, in 13 Italian centers. All these AL children were transplanted in morphological remission after a myeloablative conditioning regimen. Graft failure occurred in 2% each of UD-HSCT and αßhaplo-HSCT groups. In MUD vs MMUD-HSCT recipients, the cumulative incidence of grade II to IV and grade III to IV acute graft-versus-host disease (GVHD) was 35% vs 44% and 6% vs 18%, respectively, compared with 16% and 0% in αßhaplo-HSCT recipients (P < .001). Children treated with αßhaplo-HSCT also had a significantly lower incidence of overall and extensive chronic GVHD (P < .01). Eight (6%) MUD, 32 (28%) MMUD, and 9 (9%) αßhaplo-HSCT patients died of transplant-related complications. With a median follow-up of 3.3 years, the 5-year probability of leukemia-free survival in the 3 groups was 67%, 55%, and 62%, respectively. In the 3 groups, chronic GVHD-free/relapse-free (GRFS) probability of survival was 61%, 34%, and 58%, respectively (P < .001). When compared with patients given MMUD-HSCT, αßhaplo-HSCT recipients had a lower cumulative incidence of nonrelapse mortality and a better GRFS (P < .001). These data indicate that αßhaplo-HSCT is a suitable therapeutic option for children with AL in need of transplantation, especially when an allele-matched UD is not available.


Subject(s)
B-Lymphocytes , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Lymphocyte Depletion , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Unrelated Donors , Acute Disease , Adolescent , Allografts , Child , Child, Preschool , Chronic Disease , Female , Graft vs Host Disease/mortality , Graft vs Host Disease/prevention & control , Humans , Infant , Leukemia/mortality , Leukemia/therapy , Male , Retrospective Studies
19.
Pediatr Blood Cancer ; 67(10): e28444, 2020 10.
Article in English | MEDLINE | ID: mdl-32776425

ABSTRACT

BACKGROUND: Recent data show survival after matched unrelated donor (MUD) bone marrow transplantation (BMT) is similar to matched sibling procedures for young patients with severe aplastic anemia (SAA). Donor delays, risk of transplant-related mortality (TRM), and concern about chronic graft versus host disease raise questions about whether MUD BMT or immune suppression therapy (IST) should be preferred initial therapy for young patients lacking matched sibling donors. PROCEDURE: We performed a pilot trial to assess the feasibility of randomizing patients under age 26 with newly diagnosed SAA to receive IST versus MUD BMT. Primary aims assessed the acceptability of randomization and timing of BMT. Secondary aims measured toxicities, response, and survival. RESULTS: Sixty-seven patients with possible SAA were screened at nine centers. Of 57 with confirmed SAA, 23 underwent randomization and received therapy with a median follow-up of 18 months. Of 12 randomized to BMT, 10 started BMT as initial therapy at a median of 36 days after randomization. One BMT recipient experienced secondary graft failure, requiring a second procedure. Six of 11 randomized to IST responded, whereas five with refractory disease underwent successful salvage BMT. One patient achieving complete response relapsed after discontinuation of immune suppression and died of infection after salvage BMT. CONCLUSIONS: This feasibility study showed that a high percentage of patients underwent randomization and received up-front MUD BMT. Our study lays the groundwork for a larger randomized trial that will define best initial therapy for young patients with SAA who have an available MUD.


Subject(s)
Anemia, Aplastic/diagnosis , Anemia, Aplastic/therapy , Bone Marrow Transplantation/methods , Immunosuppressive Agents/therapeutic use , Patient Selection , Time-to-Treatment/standards , Adolescent , Adult , Child , Child, Preschool , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Infant , Male , Pilot Projects , Prognosis , Unrelated Donors , Young Adult
20.
J Immunol ; 201(5): 1460-1467, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30068594

ABSTRACT

Four killer cell Ig-like receptor (KIR) genes, collectively referred to as framework genes, characterize almost all KIR haplotypes. In particular, KIR3DL3 and KIR3DL2 mark the ends of the locus, whereas KIR3DP1 and KIR2DL4 are located in the central part. A recombination hot spot, mapped between KIR3DP1 and KIR2DL4, splits the haplotypes into two regions: a centromeric (Cen) region (spanning from KIR3DL3 to KIR3DP1) and a telomeric region (from KIR2DL4 to KIR3DL2), both varying in KIR gene content. In this study, we analyzed KIR3DP1 polymorphism in a cohort of 316 healthy, unrelated individuals. To this aim, we divided KIR3DP1 alleles into two groups by the use of a sequence-specific primer- PCR approach. Our data clearly indicated that KIR3DP1 alleles present on haplotypes carrying Cen-A or Cen-B1 regions differ from those having Cen-B2 motifs. Few donors (∼3%) made exceptions, and they were all, except one, characterized by uncommon haplotypes, including either KIR deletions or KIR duplications. Consequently, as KIR2DL1 is present in Cen-A and Cen-B1 regions but absent in Cen-B2 regions, we demonstrated that KIR3DP1 polymorphism might represent a suitable marker for KIR2DL1 gene copy number analysis. Moreover, because Cen-B1 and Cen-B2 regions are characterized by different KIR3DP1 alleles, we showed that KIR3DP1 polymorphism analysis also provides information to dissect between Cen-B1/Cen-B1 and Cen-B1/Cen-B2 donors. Taken together, our data suggest that the analysis of KIR3DP1 polymorphism should be included in KIR repertoire evaluation.


Subject(s)
Alleles , Centromere/genetics , Haplotypes , Polymorphism, Genetic , Receptors, KIR2DL4/genetics , Receptors, KIR3DS1/genetics , Centromere/immunology , Female , Gene Deletion , Gene Duplication , Humans , Male , Receptors, KIR2DL4/immunology , Receptors, KIR3DS1/immunology
SELECTION OF CITATIONS
SEARCH DETAIL