ABSTRACT
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary Ć subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.
Subject(s)
Neurodevelopmental Disorders , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Epilepsy/genetics , Exome Sequencing , Genetic Diseases, X-Linked/genetics , Heterozygote , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Shal Potassium Channels/geneticsABSTRACT
Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.
Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolismABSTRACT
BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.
Subject(s)
Distal Myopathies , Humans , Connectin/genetics , Distal Myopathies/genetics , DNA Copy Number Variations/genetics , Muscle, Skeletal/pathology , Mutation/genetics , PhenotypeABSTRACT
BACKGROUND: Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases. METHODS: While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in ~550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of ~600 JS probands from the USA. RESULTS: All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes.Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote. CONCLUSION: This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants.
Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Humans , Cerebellum/abnormalities , Abnormalities, Multiple/genetics , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Retina/abnormalitiesABSTRACT
Background: People with rare neurological diseases (RNDs) often experience symptoms related to movement disorders, requiring a multidisciplinary approach, including rehabilitation. Telemedicine applied to rehabilitation and symptom monitoring may be suitable to ensure treatment consistency and personalized intervention. The objective of this scoping review aimed to emphasize the potential role of telerehabilitation and teleassessment in managing movement disorders within RNDs. By providing a systematic overview of the available literature, we sought to highlight potential interventions, outcomes, and critical issues. Methods: A literature search was conducted on PubMed, Google Scholar, IEEE, and Scopus up to March 2024. Two inclusion criteria were followed: (1) papers focusing on telerehabilitation and teleassessment and (2) papers dealing with movement disorders in RNDs. Results: Eighteen papers fulfilled the inclusion criteria. The main interventions were home-based software and training programs, exergames, wearable sensors, smartphone applications, virtual reality and digital music players for telerehabilitation; wearable sensors, mobile applications, and patient home video for teleassessment. Key findings revealed positive outcomes in gait, balance, limb disability, and in remote monitoring. Limitations include small sample sizes, short intervention durations, and the lack of standardized protocols. Conclusion: This review highlighted the potential of telerehabilitation and teleassessment in addressing movement disorders within RNDs. Data indicate that these modalities may play a major role in supporting conventional programs. Addressing limitations through multicenter studies, longer-term follow-ups, and standardized protocols is essential. These measures are essential for improving remote rehabilitation and assessment, contributing to an improved quality of life for people with RNDs.
Subject(s)
Movement Disorders , Nervous System Diseases , Rare Diseases , Telerehabilitation , Humans , Movement Disorders/rehabilitation , Rare Diseases/rehabilitation , Nervous System Diseases/rehabilitation , Telemedicine/organization & administrationABSTRACT
Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.
Subject(s)
Cardiomyopathies , Dynamins , Mutation , Humans , Female , Dynamins/genetics , Cardiomyopathies/genetics , Mutation/genetics , Infant , Fatal Outcome , Brain Diseases/genetics , Brain Diseases/pathology , GTP Phosphohydrolases/geneticsABSTRACT
BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.
Subject(s)
Abnormalities, Multiple , Cerebellar Ataxia , Eye Abnormalities , Intellectual Disability , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Cerebellar Ataxia/genetics , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Eye Abnormalities/genetics , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Male , Phenotype , Repressor Proteins/genetics , Retina/abnormalitiesABSTRACT
BACKGROUND: Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS: We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS: A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION: CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.
Subject(s)
Cerebellar Diseases , Olivopontocerebellar Atrophies , Cerebellar Diseases/genetics , Cerebellum/diagnostic imaging , Cerebellum/pathology , Female , Humans , Male , Mutation/genetics , Nuclear Proteins/genetics , Olivopontocerebellar Atrophies/diagnosis , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , PhenotypeABSTRACT
OBJECTIVE: The aim of this study was to estimate the Friedreich's ataxia (FRDA) prevalence in a highly populated region of Italy (previous studies in small geographic areas gave a largely variable prevalence) and to define the patients' molecular and clinical characteristics. METHODS: For the point-prevalence study, we considered patients belonging to families with a molecular diagnosis of FRDA and resident in Latium on 1 January 2019. The crude prevalence of FRDA, specific for age and sex, was calculated and standardized for age using the Italian population. Moreover, we investigated possible correlations among patients' genetic profile, symptoms, and age of onset. RESULTS: We identified 63 FRDA patients; the crude prevalence for total, males, and females were 1.07 (95% CI: 0.81-1.37), 0.81 (95% CI: 0.54-1.22), and 1.32 (95% CI: 0.97-1.79), per 100,000 inhabitants. We divided FRDA patients by three age-at-onset groups (early-EOFA 73%; late-LOFA 11.1%; very late-VLOFA 15.9%) and found significant differences in the scale for the assessment and rating of ataxia (SARA; p = 0.001), a biased distribution of the shorter allele (p = 0.001), an excess of scoliosis and cardiomyopathy (p = 0.001) in EOFA. To determine the contribution of patients' molecular and clinical characteristics to the annual rate of progression, we performed a multivariate regression analysis that gave an R2 value of 45.3%. CONCLUSIONS: We estimated the crude and standardized prevalence of FRDA in Latium. A clinical classification (EOFA, LOFA, VLOFA) gave significant correlations. This epidemiological estimate allows monitoring disease prevalence over time in cohort studies and/or for developing disease registry.
Subject(s)
Friedreich Ataxia , Cohort Studies , Cross-Sectional Studies , Female , Friedreich Ataxia/diagnosis , Friedreich Ataxia/epidemiology , Friedreich Ataxia/genetics , Humans , Italy/epidemiology , Male , PrevalenceABSTRACT
We show that extracellular vesicles (EVs) released by mesenchymal cells (i.e., fibro-adipogenic progenitors-FAPs) mediate microRNA (miR) transfer to muscle stem cells (MuSCs) and that exposure of dystrophic FAPs to HDAC inhibitors (HDACis) increases the intra-EV levels of a subset of miRs, which cooperatively target biological processes of therapeutic interest, including regeneration, fibrosis, and inflammation. Increased levels of miR-206 in EVs released by FAPs of muscles from Duchenne muscular dystrophy (DMD) patients or mdx mice exposed to HDACi are associated with enhanced regeneration and decreased fibrosis. Consistently, EVs from HDACi-treated dystrophic FAPs can stimulate MuSC activation and expansion exĀ vivo, and promote regeneration, while inhibiting fibrosis and inflammation of dystrophic muscles, upon intramuscular transplantation in mdx mice, inĀ vivo. AntagomiR-mediated blockade of individual miRs reveals a specific requirement of miR-206 for EV-induced expansion of MuSCs and regeneration of dystrophic muscles, and indicates that cooperative activity of HDACi-induced miRs accounts for the net biological effect of these EVs. These data point to pharmacological modulation of EV content as novel strategy for therapeutic interventions in muscular dystrophies.
Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , MicroRNAs/genetics , Muscle, SkeletalABSTRACT
Primary genetic mitochondrial diseases are often difficult to diagnose, and the term 'possible' mitochondrial disease is used frequently by clinicians when such a diagnosis is suspected. There are now many known phenocopies of mitochondrial disease. Advances in genomic testing have shown that some patients with a clinical phenotype and biochemical abnormalities suggesting mitochondrial disease may have other genetic disorders. In instances when a genetic diagnosis cannot be confirmed, a diagnosis of 'possible' mitochondrial disease may result in harm to patients and their families, creating anxiety, delaying appropriate diagnosis and leading to inappropriate management or care. A categorisation of 'diagnosis uncertain', together with a specific description of the metabolic or genetic abnormalities identified, is preferred when a mitochondrial disease cannot be genetically confirmed.
Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Biomarkers , Genetic Testing , Humans , PhenotypeABSTRACT
Friedreich's ataxia (FA) is a trinucleotide repeats expansion neurodegenerative disorder, for which no cure or approved therapies are present. In most cases, GAA trinucleotide repetitions in the first intron of the FXN gene are the genetic trigger of FA, determining a strong reduction of frataxin, a mitochondrial protein involved in iron homeostasis. Frataxin depletion impairs iron-sulfur cluster biosynthesis and determines iron accumulation in the mitochondria. Mounting evidence suggests that these defects increase oxidative stress susceptibility and reactive oxygen species production in FA, where the pathologic picture is worsened by a defective regulation of the expression and signaling pathway modulation of the transcription factor NF-E2 p45-related factor 2 (NRF2), one of the fundamental mediators of the cellular antioxidant response. NRF2 protein downregulation and impairment of its nuclear translocation can compromise the adequate cellular response to the frataxin depletion-dependent redox imbalance. As NRF2 stability, expression, and activation can be modulated by diverse natural and synthetic compounds, efforts have been made in recent years to understand if regulating NRF2 signaling might ameliorate the pathologic defects in FA. Here we provide an analysis of the pharmaceutical interventions aimed at restoring the NRF2 signaling network in FA, elucidating specific biomarkers useful for monitoring therapeutic effectiveness, and developing new therapeutic tools.
Subject(s)
Biomarkers/analysis , Biomarkers/metabolism , Friedreich Ataxia/diagnosis , Friedreich Ataxia/therapy , NF-E2-Related Factor 2/metabolism , Friedreich Ataxia/metabolism , Humans , Signal TransductionABSTRACT
Tubulinopathies are rare neurological disorders caused by alterations in tubulin structure and function, giving rise to a wide range of brain abnormalities involving neuronal proliferation, migration, differentiation and axon guidance. TUBB is one of the ten Ć-tubulin encoding genes present in the human genome and is broadly expressed in the developing central nervous system and the skin. Mutations in TUBB are responsible for two distinct pathological conditions: the first is characterized by microcephaly and complex structural brain malformations and the second, also known as "circumferential skin creases Kunze type" (CSC-KT), is associated to neurological features, excess skin folding and growth retardation. We used a combination of immunocytochemical and cellular approaches to explore, on patients' derived fibroblasts, the functional consequences of two TUBB variants: the novel mutation (p.N52S), associated with basal ganglia and cerebellar dysgenesis, and the previously reported variant (p.M73T), linked to microcephaly, corpus callosum agenesis and CSC-KT skin phenotype. Our results demonstrate that these variants impair microtubule (MT) function and dynamics. Most importantly, our studies show an altered epidermal growth factor (EGF) and transferrin (Tf) intracellular vesicle trafficking in both patients' fibroblasts, suggesting a specific role of TUBB in MT-dependent vesicular transport.
Subject(s)
Microtubules/metabolism , Mutation/genetics , Transport Vesicles/metabolism , Tubulin/genetics , Amino Acid Sequence , Cell Movement/drug effects , Child , DNA Mutational Analysis , Epidermal Growth Factor/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Magnetic Resonance Imaging , Models, Molecular , Nocodazole/pharmacology , Phenotype , Protein Transport , Transferrin/metabolism , Tubulin/chemistryABSTRACT
NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.
Subject(s)
Acetylcysteine/pharmacology , Friedreich Ataxia/pathology , Iron-Binding Proteins/metabolism , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Biopsy , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Friedreich Ataxia/drug therapy , Friedreich Ataxia/metabolism , Humans , Molecular Targeted Therapy , Oxidation-Reduction , Signal Transduction/drug effects , Sulfoxides , Time Factors , Transcriptional Activation/drug effects , FrataxinABSTRACT
Patients affected by protocadherin 19 (PCDH19)-female limited epilepsy (PCDH19-FE) present a remarkable reduction in allopregnanolone blood levels. However, no information is available on other neuroactive steroids and the steroidogenic response to hormonal stimulation. For this reason, we evaluated allopregnanolone, pregnanolone, and pregnenolone sulfate by liquid chromatographic procedures coupled with electrospray tandem mass spectrometry in 12 unrelated patients and 15 age-matched controls. We also tested cortisol, estradiol, progesterone, and 17OH-progesterone using standard immunoassays. Apart from estradiol and progesterone, all the considered hormones were evaluated in basal condition and after stimulation with adrenocorticotropic hormone (ACTH). A generalized decrease in blood levels of almost all measured neuroactive steroids was found. When considering sexual development, cortisol and pregnenolone sulfate basal levels were significantly reduced in postpubertal girls affected by PCDH19-FE. Of interest, ACTH administration did not recover pregnenolone sulfate serum levels but restored cortisol to control levels. In prepubertal girls with PCDH19-FE, by challenging adrenal function with ACTH we disclosed defects in the production of cortisol, pregnenolone sulfate, and 17OH-progesterone, which were not apparent in basal condition. These findings point to multiple defects in peripheral steroidogenesis associated with and potentially relevant to PCDH19-FE. Some of these defects could be addressed by stimulating adrenocortical activity.
Subject(s)
Cadherins/genetics , Epilepsy/blood , Epilepsy/genetics , Genetic Diseases, X-Linked/blood , Genetic Diseases, X-Linked/genetics , Gonadal Steroid Hormones/blood , Intellectual Disability/blood , Intellectual Disability/genetics , Pregnanolone/blood , Pregnanolone/deficiency , Pregnenolone/blood , 17-alpha-Hydroxyprogesterone/blood , Adolescent , Adrenocorticotropic Hormone/pharmacology , Adrenogenital Syndrome/blood , Case-Control Studies , Child , Child, Preschool , DNA Mutational Analysis , Estradiol/blood , Female , Humans , Hydrocortisone/blood , Progesterone/blood , Prospective Studies , Protocadherins , Puberty, Precocious/blood , Puberty, Precocious/genetics , Reference ValuesABSTRACT
Nicotinic acetylcholine receptor genes are involved mainly in nocturnal frontal epilepsy. Despite extensive studies, to date, the α2 subunit did not show a strong association with this peculiar epileptic phenotype. We report CHRNA2 missense mutation in a family with benign familial infantile seizures (BFIS). TrueSeq Custom Amplicon (TSCA) sequencing approach was used to screen 10 ion channel genes in patients with idiopathic epilepsies. TSCA revealed a heterozygous single-nucleotide substitution in CHRNA2 gene (c.1126 C>T; p. Arg376Trp) that segregated in a family with BFIS; based on bio-informatics inspection, the change was predicted to be pathogenic. The investigated family includes parents and their three daughters. In affected individuals, seizures started between 6 and 24 months of age. Seizures were mainly in cluster and well-controlled. Outcome was good in all subjects. Even if nicotinic acetylcholine receptor genes are traditionally associated with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), this single-family description can open new possibilities in the genetic diagnosis, molecular characterization, and management of CHRNA2-related epilepsy. The pathogenic conversion of arginine 376 to tryptophan alters all of these interactions in the cytoplasmic domain, never reported to be involved in epileptogenic mechanism. Further functional tests will be necessary to strongly relate CHRNA2 mutation with BFIS phenotype.
Subject(s)
Epilepsy, Benign Neonatal/genetics , Mutation/genetics , Pedigree , Receptors, Nicotinic/genetics , Adult , Arginine/genetics , Child, Preschool , DNA Mutational Analysis , Electroencephalography , Epilepsy, Benign Neonatal/physiopathology , Female , Humans , MaleABSTRACT
This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.
Subject(s)
Cardiomyopathy, Dilated , Muscular Diseases , Male , Humans , Child , Connectin/genetics , Muscular Diseases/genetics , Phenotype , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Codon, Nonsense , MutationABSTRACT
(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.
Subject(s)
Cockayne Syndrome , DNA Helicases , DNA Repair Enzymes , Poly-ADP-Ribose Binding Proteins , Transcription Factors , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , Cockayne Syndrome/diagnosis , Poly-ADP-Ribose Binding Proteins/genetics , DNA Repair Enzymes/genetics , Female , Male , DNA Helicases/genetics , Child , Child, Preschool , Adolescent , Retrospective Studies , Adult , Infant , Genetic Association Studies , Young AdultABSTRACT
PURPOSE: To report on a new phenotype in a patient carrying a novel, undescribed de novo variant in POLR3B, affected by generalized myoclonic epilepsy and neurodevelopmental disorder, without neuropathy. It is known that biallelic pathogenic variants in POLR3B cause hypomyelinating leukodystrophy-8, and heterozygous de novo variants are described in association to a phenotype characterized by predominantly demyelinating sensory-motor peripheral neuropathy, ataxia, spasticity, intellectual disability and epilepsy, in which the peripheral neuropathy is often the main clinical presentation. METHODS: We collected clinical, electrophysiological and neuroimaging data from the affected subject and performed a Trio-Clinical Exome Sequencing. RESULTS: We detected a de novo novel heterozygous missense variant c.1132A>G in POLR3B (NM_018082.6) that was considered as likely pathogenic following ACMG criteria. We also consulted our custom genomic database of a total of 1485 patients that were genetically analysed from 2018 for epilepsy, and found no other de novo variants in the POLR3B gene. CONCLUSION: We hypothesize a possible genotype-phenotype correlation, particularly regarding epilepsy. We also provide a review of the literature about the previously described POLR3B heterozygous patients, with particular attention to the epileptic phenotype, underlining the association between POLR3B and early onset myoclonic epilepsy, which can represent the main manifestation of the disease at its onset.
Subject(s)
Epilepsies, Myoclonic , RNA Polymerase III , Humans , RNA Polymerase III/genetics , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , Male , Mutation, Missense , Female , Phenotype , Genetic Association StudiesABSTRACT
It has long been reported that neuropsychological deficits may be present in dystrophinopathies, specifically non-progressive cognitive impairment and a global deficit in executive functions; this neurocognitive profile has been less explored in patients with Becker than Duchenne muscular dystrophy (BMD/DMD). We conducted a longitudinal study to explore the evolution of neuropsychological and behavioural profile in a cohort of paediatric BMD. Seventeen patients with BMD without intellectual disability were assessed using a full battery of tests, including intellectual, adaptive and executive functioning, language and behavioral features. Tests were performed at baseline and after 12 months. The results showed adequate cognitive and adaptive profile with falls in Working Memory, as well as lower scores in executive functions. An improvement was observed in Processing Speed. Behavioral questionnaires confirmed a negative trend, while in normal ranges. We found a statistically significant difference between T0 and T1 in some items exploring executive functions. No statistically significant difference was observed stratifying patients by mutation site or IQ level. In conclusion, our study suggests that BMD patients have a stable neurocognitive profile, while a deflection in the executive functions may be observed. We recommend a careful monitoring to intercept learning disabilities and promptly start a multimodal rehabilitation.