ABSTRACT
Amphibians represent a useful taxon to study the evolution of sex determination because of their highly variable sex-determination systems. However, the sex-determination system for many amphibian families remains unknown, in part because of a lack of genomic resources. Here, using an F1 family of Green-eyed Treefrogs (Litoria serrata), we produce the first genetic linkage map for any Australo-Papuan Treefrogs (family: Pelodryadidae). The resulting linkage map contains 8662 SNPs across 13 linkage groups. Using an independent set of sexed adults, we identify a small region in linkage group 6 matching an XY sex-determination system. These results suggest Litoria serrata possesses a male heterogametic system, with a candidate sex-determination locus on linkage group 6. Furthermore, this linkage map represents the first genomic resource for Australo-Papuan Treefrogs, an ecologically diverse family of over 220 species.
ABSTRACT
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
ABSTRACT
Recent surveys of rocky rainforest in the Townsville region have found additional populations of Phyllurus geckos. One of these populations was discovered at The Pinnacles, an isolated area of habitat in between the distributions of P. gulbaru and P. amnicola. Genetic and morphological data shows that this population is most similar to P. gulbaru Hoskin, Couper Schneider, 2003 but divergent in a number of traits. Here we describe this population as a new species, P. pinnaclensis sp. nov., based on genetic divergence and differences in a number of morphometric and scalation traits from other populations of Phyllurus. Phyllurus pinnaclensis sp. nov. appears to be restricted to a few small areas of deeply layered rock with associated dry rainforest. This habitat is fire-sensitive and increased frequency and intensity of fires (due to late season burns and high fuel loads of invasive grasses) threatens to reduce and fragment these dry rainforest patches. Other threats include potential future invasion of the habitat by introduced Asian House Geckos (Hemidactylus frenatus Duméril Bibron, 1836) and illegal collecting. Given the very small and fragmented distribution and potential reduction in habitat area due to fire, P. pinnaclensis sp. nov. warrants a Critically Endangered listing. Resolving the distributional change of dry rainforest in the Townsville region in recent decades, particularly in regards to fire, is key to resolving the status of this and other locally threatened taxa that depend on this habitat.