Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
PLoS Genet ; 17(11): e1009890, 2021 11.
Article in English | MEDLINE | ID: mdl-34723970

ABSTRACT

In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.


Subject(s)
Heart/physiology , Histone Deacetylase 1/metabolism , Myocytes, Cardiac/cytology , Regeneration/physiology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cell Proliferation
2.
Dev Biol ; 481: 226-237, 2022 01.
Article in English | MEDLINE | ID: mdl-34748730

ABSTRACT

Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/ß-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/ß-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/ß-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/ß-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/ß-catenin signaling plays a positive role during heart regeneration in zebrafish.


Subject(s)
Myocardium/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Wnt Signaling Pathway , Zebrafish Proteins/metabolism , Zebrafish/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation , Zebrafish/genetics , Zebrafish Proteins/genetics , beta Catenin/genetics
3.
Dev Biol ; 471: 106-118, 2021 03.
Article in English | MEDLINE | ID: mdl-33309949

ABSTRACT

Adult zebrafish are frequently described to be able to "completely" regenerate the heart. Yet, the extent to which cardiomyocytes lost to injury are replaced is unknown, since existing evidence for cardiomyocyte proliferation is indirect or non-quantitative. We established stereological methods to quantify the number of cardiomyocytes at several time-points post cryoinjury. Intriguingly, after cryoinjuries that killed about 1/3 of the ventricular cardiomyocytes, pre-injury cardiomyocyte numbers were restored already within 30 days. Yet, many hearts retained small residual scars, and a subset of cardiomyocytes bordering these fibrotic areas remained smaller, lacked differentiated sarcomeric structures, and displayed defective calcium signaling. Thus, a subset of regenerated cardiomyocytes failed to fully mature. While lineage-tracing experiments have shown that regenerating cardiomyocytes are derived from differentiated cardiomyocytes, technical limitations have previously made it impossible to test whether cardiomyocyte trans-differentiation contributes to regeneration of non-myocyte cell lineages. Using Cre responder lines that are expressed in all major cell types of the heart, we found no evidence for cardiomyocyte transdifferentiation into endothelial, epicardial, fibroblast or immune cell lineages. Overall, our results imply a refined answer to the question whether zebrafish can completely regenerate the heart: in response to cryoinjury, preinjury cardiomyocyte numbers are indeed completely regenerated by proliferation of lineage-restricted cardiomyocytes, while restoration of cardiomyocyte differentiation and function, as well as resorption of scar tissue, is less robustly achieved.


Subject(s)
Heart/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Zebrafish/metabolism , Animals , Fibrosis , Myocardium/pathology , Myocytes, Cardiac/pathology
4.
Nucleus ; 14(1): 2246310, 2023 12.
Article in English | MEDLINE | ID: mdl-37606283

ABSTRACT

In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.


Subject(s)
Nuclear Lamina , Nuclear Pore , Animals , Ploidies , Cell Differentiation , Lamins , Mammals
5.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868166

ABSTRACT

While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.


Subject(s)
Cell Proliferation , Cellular Reprogramming/physiology , Heart/physiology , Myocytes, Cardiac/metabolism , Regeneration/physiology , Signal Transduction/physiology , Single-Cell Analysis/methods , Zebrafish/growth & development , Animals , Animals, Genetically Modified , Cellular Reprogramming/genetics , Female , Gene Expression Regulation, Developmental , Genes, erbB-2/genetics , Genes, erbB-2/physiology , Glycolysis , Heart/embryology , Hexokinase/genetics , Hexokinase/metabolism , Male , Mice , Models, Animal , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuregulin-1/genetics , Regeneration/genetics , Signal Transduction/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL