Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 402
Filter
Add more filters

Publication year range
1.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36580912

ABSTRACT

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Subject(s)
COVID-19 , Respiratory System , SARS-CoV-2 , Humans , Cilia/physiology , Cilia/virology , COVID-19/virology , Respiratory System/cytology , Respiratory System/virology , SARS-CoV-2/physiology , Microvilli/physiology , Microvilli/virology , Virus Internalization , Epithelial Cells/physiology , Epithelial Cells/virology
2.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
3.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004145

ABSTRACT

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Subject(s)
Cell Membrane/metabolism , Polysaccharides/metabolism , RNA/metabolism , Animals , Antibodies/metabolism , Base Sequence , Biosynthetic Pathways , Cell Line , Cell Survival , Humans , Mass Spectrometry , N-Acetylneuraminic Acid/metabolism , Polyadenylation , Polysaccharides/chemistry , RNA/chemistry , RNA/genetics , RNA, Untranslated/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Staining and Labeling
4.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33743211

ABSTRACT

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Subject(s)
Host-Pathogen Interactions , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/virology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chlorocebus aethiops , Female , Genome, Viral , Humans , Lung/virology , Male , Mass Spectrometry , Mitochondria/metabolism , Mitochondria/ultrastructure , Proteome/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/ultrastructure , Vero Cells
5.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31056282

ABSTRACT

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Subject(s)
Cell Shape , Extracellular Matrix/metabolism , Glycocalyx/metabolism , Membrane Glycoproteins/metabolism , Mucins/metabolism , Animals , Cell Line , Extracellular Matrix/genetics , Glycocalyx/genetics , Horses , Humans , Membrane Glycoproteins/genetics , Mucins/genetics
6.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328918

ABSTRACT

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Hyaluronan Receptors/metabolism , Receptors, Immunologic/metabolism , Adult , Animals , Binding Sites , COS Cells , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/genetics , Hyaluronic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding
7.
Cell ; 164(1-2): 128-140, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26771488

ABSTRACT

Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.


Subject(s)
Integrins/metabolism , Macrophages/immunology , Phagocytosis , Actins/metabolism , Animals , Humans , Leukocyte Common Antigens/metabolism , Macrophages/cytology , Mice , Podosomes/metabolism , Protein Structure, Tertiary , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptors, IgG/metabolism
8.
Proc Natl Acad Sci U S A ; 121(13): e2320053121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513100

ABSTRACT

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here, we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin-like growth factor 2 (IGF2). After showing initial efficacy with wild-type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially selective targeted protein degradation.


Subject(s)
Lysosomes , Humans , HEK293 Cells , Proteolysis
9.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
10.
Nature ; 584(7820): 291-297, 2020 08.
Article in English | MEDLINE | ID: mdl-32728216

ABSTRACT

The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein-for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins-the products of 40% of all protein-encoding genes7-are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified-but essential-component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.


Subject(s)
Extracellular Space/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Proteolysis , Recombinant Fusion Proteins/metabolism , Animals , Antibodies/chemistry , Antibodies/metabolism , Antigens, CD/metabolism , Apolipoprotein E4/metabolism , B7-H1 Antigen/metabolism , CRISPR-Cas Systems , Cell Line , ErbB Receptors/metabolism , Female , Glycopeptides/chemical synthesis , Glycopeptides/metabolism , Humans , Ligands , Membrane Proteins/chemistry , Mice , Protein Domains , Protein Transport , Receptor, IGF Type 2/metabolism , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/chemical synthesis , Recombinant Fusion Proteins/chemistry , Solubility , Substrate Specificity
11.
Nature ; 579(7798): 291-296, 2020 03.
Article in English | MEDLINE | ID: mdl-32103174

ABSTRACT

The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.


Subject(s)
Calcium-Binding Proteins/metabolism , Hematopoiesis/genetics , Ku Autoantigen/metabolism , Lymphoma/enzymology , Lymphoma/physiopathology , RNA, Ribosomal, 18S/metabolism , Calcium-Binding Proteins/genetics , Catalytic Domain/physiology , DNA Repair/genetics , Enzyme Activation/genetics , HeLa Cells , Humans , Lymphoma/genetics , Models, Animal , Mutation , Phosphorylation , Protein Binding , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/genetics , RNA, Small Nucleolar/metabolism
12.
Nature ; 583(7816): 425-430, 2020 07.
Article in English | MEDLINE | ID: mdl-32612231

ABSTRACT

The vascular interface of the brain, known as the blood-brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability1-3. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins4,5. Thus, it is unclear whether permeability to individually injected exogenous tracers-as is standard in BBB studies-fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.


Subject(s)
Aging/metabolism , Aging/pathology , Blood-Brain Barrier/metabolism , Transcytosis , Alkaline Phosphatase/metabolism , Animals , Antibodies/metabolism , Biological Transport , Blood Proteins/administration & dosage , Blood Proteins/metabolism , Blood Proteins/pharmacokinetics , Brain/blood supply , Brain/metabolism , Drug Delivery Systems , Health , Humans , Male , Mice , Mice, Inbred C57BL , Plasma/metabolism , Proteome/administration & dosage , Proteome/metabolism , Proteome/pharmacokinetics , Receptors, Transferrin/immunology , Transcription, Genetic , Transferrin/metabolism
13.
Proc Natl Acad Sci U S A ; 120(11): e2215376120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897988

ABSTRACT

The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-myc , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Humans , Mice , Antigens, CD/metabolism , Ligands , Macrophages/metabolism , Neoplasms/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Proto-Oncogene Proteins c-myc/metabolism
14.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141764

ABSTRACT

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Subject(s)
Antigens, Differentiation, Myelomonocytic , Ligands , Lymphocyte Activation , T-Lymphocytes , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Cell Polarity/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Protein Binding , Signal Transduction , T-Lymphocytes/immunology , Humans
15.
J Immunol ; 211(2): 295-305, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37256255

ABSTRACT

Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Mice , Animals , Humans , Female , Toll-Like Receptor 9 , Mice, Transgenic , Adjuvants, Immunologic/pharmacology , Mammary Neoplasms, Animal/therapy , Breast Neoplasms/therapy , Tumor Microenvironment , Cell Line, Tumor
16.
Nature ; 568(7751): 187-192, 2019 04.
Article in English | MEDLINE | ID: mdl-30944478

ABSTRACT

Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR-Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-ß oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain.


Subject(s)
Aging/physiology , Brain/cytology , Homeostasis/drug effects , Microglia/drug effects , N-Acetylneuraminic Acid/pharmacology , Phagocytosis/drug effects , Sialic Acid Binding Ig-like Lectin 2/antagonists & inhibitors , Aging/drug effects , Aging/genetics , Animals , Brain/drug effects , Brain/physiology , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Cognition/drug effects , Cognition/physiology , Female , Homeostasis/genetics , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , N-Acetylneuraminic Acid/chemistry , Phagocytosis/genetics , Sequence Analysis, RNA , Sialic Acid Binding Ig-like Lectin 2/genetics , Sialic Acid Binding Ig-like Lectin 2/metabolism
17.
Proc Natl Acad Sci U S A ; 119(11): e2118646119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35271393

ABSTRACT

SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.


Subject(s)
Ferroptosis , Gene Expression Regulation , NF-E2-Related Factor 1 , Oxidative Stress , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis/genetics , Gene Knockout Techniques , Humans , Lipid Peroxidation , Metabolic Networks and Pathways/genetics , NF-E2-Related Factor 1/genetics , NF-E2-Related Factor 1/metabolism , Oxidative Stress/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
18.
Proc Natl Acad Sci U S A ; 119(39): e2117105119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122205

ABSTRACT

Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.


Subject(s)
Cathepsin D , Lysosomes , Mucins , Animals , Cathepsin D/genetics , Cathepsin D/metabolism , Glycoproteins/metabolism , Humans , Lysosomes/enzymology , Mammals/metabolism , Mice , Mucins/metabolism , Polysaccharides/metabolism
19.
J Biol Chem ; 299(6): 104755, 2023 06.
Article in English | MEDLINE | ID: mdl-37116708

ABSTRACT

The colony-stimulating factor 3 receptor (CSF3R) controls the growth of neutrophils, the most abundant type of white blood cell. In healthy neutrophils, signaling is dependent on CSF3R binding to its ligand, CSF3. A single amino acid mutation in CSF3R, T618I, instead allows for constitutive, ligand-independent cell growth and leads to a rare type of cancer called chronic neutrophilic leukemia. However, the disease mechanism is not well understood. Here, we investigated why this threonine to isoleucine substitution is the predominant mutation in chronic neutrophilic leukemia and how it leads to uncontrolled neutrophil growth. Using protein domain mapping, we demonstrated that the single CSF3R domain containing residue 618 is sufficient for ligand-independent activity. We then applied an unbiased mutational screening strategy focused on this domain and found that activating mutations are enriched at sites normally occupied by asparagine, threonine, and serine residues-the three amino acids which are commonly glycosylated. We confirmed glycosylation at multiple CSF3R residues by mass spectrometry, including the presence of GalNAc and Gal-GalNAc glycans at WT threonine 618. Using the same approach applied to other cell surface receptors, we identified an activating mutation, S489F, in the interleukin-31 receptor alpha chain. Combined, these results suggest a role for glycosylated hotspot residues in regulating receptor signaling, mutation of which can lead to ligand-independent, uncontrolled activity and human disease.


Subject(s)
Leukemia, Neutrophilic, Chronic , Humans , Leukemia, Neutrophilic, Chronic/diagnosis , Leukemia, Neutrophilic, Chronic/genetics , Leukemia, Neutrophilic, Chronic/metabolism , Glycosylation , Ligands , Mutation , Receptors, Colony-Stimulating Factor/genetics , Receptors, Colony-Stimulating Factor/metabolism , Threonine/metabolism , Colony-Stimulating Factors/genetics , Colony-Stimulating Factors/metabolism
20.
Glycobiology ; 34(1)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37815932

ABSTRACT

Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out. Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant, well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous epitope tags to achieve the specificity required to evaluate potential interactions.


Subject(s)
Galectin 3 , RNA , Humans , Epitopes , Galectin 3/genetics , Galectin 3/metabolism , Galectins/metabolism , Proteomics , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL