Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Antimicrob Agents Chemother ; : e0172123, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990013

ABSTRACT

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.

2.
Antimicrob Agents Chemother ; : e0068724, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023262

ABSTRACT

Imipenemase (IMP) metallo-ß-lactamases (MBLs) hydrolyze almost all available ß-lactams including carbapenems and are not inhibited by any commercially available ß-lactamase inhibitor. Tebipenem (TP) pivoxil is the first orally available carbapenem and possesses a unique bicyclic azetidine thiazole moiety located at the R2 position. TP has potent in vitro activity against Enterobacterales producing extended-spectrum and/or AmpC ß-lactamases. Thus far, the activity of TP against IMP-producing strains is understudied. To address this knowledge gap, we explored the structure activity relationships of IMP MBLs by investigating whether IMP-6, IMP-10, IMP-25, and IMP-78 [MBLs with expanded hydrolytic activity against meropenem (MEM)] would demonstrate enhanced activity against TP. Most of the Escherichia coli DH10B strains expressing IMP-1 variants displayed a ≥twofold MIC difference between TP and MEM, while those expressing VIM or NDM variants demonstrated comparable MICs. Catalytic efficiency (kcat/KM) values for the TP hydrolysis by IMP-1, IMP-6, IMP-10, IMP-25, and IMP-78 were significantly lower than those obtained for MEM. Molecular dynamic simulations reveal that V67F and S262G substitutions (found in IMP-78) reposition active site loop 3, ASL-3, to better accommodate the bicyclic azetidine thiazole side chain, allowing microbiological/catalytic activity to approach that of comparison MBLs used in this study. These findings suggest that modifying the R2 side chain of carbapenems can significantly impact hydrolytic stability. Furthermore, changes in conformational dynamics due to single amino acid substitutions should be used to inform drug design of novel carbapenems.

3.
Antimicrob Agents Chemother ; 68(2): e0133223, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38174924

ABSTRACT

Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid ß-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-ß-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.


Subject(s)
Anti-Bacterial Agents , Borinic Acids , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Carboxylic Acids/pharmacology , Borinic Acids/pharmacology , Ceftazidime , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Microbial Sensitivity Tests
4.
J Chem Inf Model ; 64(10): 3977-3991, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38727192

ABSTRACT

The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.


Subject(s)
Machine Learning , Microbial Sensitivity Tests , Molecular Docking Simulation , beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Escherichia coli/drug effects , Escherichia coli/enzymology , High-Throughput Screening Assays
5.
Angew Chem Int Ed Engl ; 63(12): e202317315, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38227422

ABSTRACT

The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.


Subject(s)
Anti-Bacterial Agents , Ceftazidime , Ceftazidime/chemistry , Ceftazidime/metabolism , Anti-Bacterial Agents/chemistry , beta-Lactamases/metabolism , Bacterial Proteins/metabolism , Azabicyclo Compounds , Amino Acid Substitution , Microbial Sensitivity Tests , beta-Lactamase Inhibitors
6.
Antimicrob Agents Chemother ; 67(11): e0071423, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37874296

ABSTRACT

ß-Lactam antibiotics are among the most frequently prescribed therapeutic agents. A common mechanism of resistance toward ß-lactam antibiotics is the production of ß-lactamases. These enzymes are capable of hydrolyzing the ß-lactam bond, rendering the drug inactive. Among the four described classes, the metallo- ß-lactamases (MBLs, class B) employ one or two zinc ions in the active site for catalysis. One of the three most clinically relevant MBLs is New Delhi Metallo- ß-Lactamase (NDM-1). The current study sought to investigate the in vitro protein evolution of NDM-1 ß-lactamase using error-prone polymerase chain reaction. Evaluation revealed that variants were not found to confer higher levels of resistance toward meropenem based on amino acid substitutions. Thus, we postulate that increases in transcription or changes in zinc transport may be clinically more relevant to meropenem resistance than amino acid substitutions.


Subject(s)
beta-Lactamases , beta-Lactams , Meropenem , beta-Lactamases/metabolism , beta-Lactams/chemistry , Zinc , Catalytic Domain , Anti-Bacterial Agents/pharmacology , beta-Lactamase Inhibitors/chemistry
7.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36602311

ABSTRACT

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Subject(s)
Triazoles , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , Boronic Acids/pharmacology , Boronic Acids/chemistry , Penicillins , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
Antimicrob Agents Chemother ; 66(4): e0212421, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35311523

ABSTRACT

ß-Lactamase-mediated resistance to ceftazidime-avibactam (CZA) is a serious limitation in the treatment of Gram-negative bacteria harboring Klebsiella pneumoniae carbapenemase (KPC). Herein, the basis of susceptibility to carbapenems and resistance to ceftazidime (CAZ) and CZA of the D179Y variant of KPC-2 and -3 was explored. First, we determined that resistance to CZA in a laboratory strain of Escherichia coli DH10B was not due to increased expression levels of the variant enzymes, as demonstrated by reverse transcription PCR (RT-PCR). Using timed mass spectrometry, the D179Y variant formed prolonged acyl-enzyme complexes with imipenem (IMI) and meropenem (MEM) in KPC-2 and KPC-3, which could be detected up to 24 h, suggesting that IMI and MEM act as covalent ß-lactamase inhibitors more than as substrates for D179Y KPC-2 and -3. This prolonged acyl-enzyme complex of IMI and MEM by D179Y variants was not observed with wild-type (WT) KPCs. CAZ was studied and the D179Y variants also formed acyl-enzyme complexes (1 to 2 h). Thermal denaturation and differential scanning fluorimetry showed that the tyrosine substitution at position 179 destabilized the KPC ß-lactamases (KPC-2/3 melting temperature [Tm] of 54 to 55°C versus D179Y Tm of 47.5 to 51°C), and the D179Y protein was 3% disordered compared to KPC-2 at 318 K. Heteronuclear 1H/15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy also revealed that the D179Y variant, compared to KPC-2, is partially disordered. Based upon these observations, we discuss the impact of disordering of the Ω loop as a consequence of the D179Y substitution. These conformational changes and disorder in the overall structure as a result of D179Y contribute to this unanticipated phenotype.


Subject(s)
Ceftazidime , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ceftazidime/pharmacology , Drug Combinations , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Imipenem/pharmacology , Klebsiella Infections/drug therapy , Klebsiella pneumoniae , Magnetic Resonance Spectroscopy , Meropenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435707

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , United States , beta-Lactamases/metabolism
10.
Article in English | MEDLINE | ID: mdl-33468463

ABSTRACT

Metallo-ß-lactamases (MBLs) are a growing clinical threat because they inactivate nearly all ß-lactam-containing antibiotics, and there are no clinically available inhibitors. A significant number of variants have already emerged for each MBL subfamily. To understand the evolution of imipenemase (IMP) genes (blaIMP) and their clinical impact, 20 clinically derived IMP-1 like variants were obtained using site-directed mutagenesis and expressed in a uniform genetic background in Escherichia coli strain DH10B. Strains of IMP-1-like variants harboring S262G or V67F substitutions exhibited increased resistance toward carbapenems and decreased resistance toward ampicillin. Strains expressing IMP-78 (S262G/V67F) exhibited the largest changes in MIC values compared to IMP-1. In order to understand the molecular mechanisms of increased resistance, biochemical, biophysical, and molecular modeling studies were conducted to compare IMP-1, IMP-6 (S262G), IMP-10 (V67F), and IMP-78 (S262G/V67F). Finally, unlike most New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM) variants, the IMP-1-like variants do not confer any additional survival advantage if zinc availability is limited. Therefore, the evolution of MBL subfamilies (i.e., IMP-6, -10, and -78) appears to be driven by different selective pressures.


Subject(s)
Carbapenems , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics
11.
Article in English | MEDLINE | ID: mdl-32152075

ABSTRACT

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of ß-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/metabolism , Penicillin-Binding Proteins/antagonists & inhibitors , Penicillin-Binding Proteins/metabolism , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/metabolism , Binding Sites/physiology , Catalytic Domain/drug effects , Cephalosporins/pharmacology , Crystallography, X-Ray , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Protein Binding
12.
Article in English | MEDLINE | ID: mdl-32393499

ABSTRACT

Mycobacterium abscessus is a highly drug-resistant nontuberculous mycobacterium (NTM). Efforts to discover new treatments for M. abscessus infections are accelerating, with a focus on cell wall synthesis proteins (M. abscessus l,d-transpeptidases 1 to 5 [LdtMab1 to LdtMab5] and d,d-carboxypeptidase) that are targeted by ß-lactam antibiotics. A challenge to this approach is the presence of chromosomally encoded ß-lactamase (BlaMab). Using a mechanism-based approach, we found that a novel ceftaroline-imipenem combination effectively lowered the MICs of M. abscessus isolates (MIC50 ≤ 0.25 µg/ml; MIC90 ≤ 0.5 µg/ml). Combining ceftaroline and imipenem with a ß-lactamase inhibitor, i.e., relebactam or avibactam, demonstrated only a modest effect on susceptibility compared to each of the ß-lactams alone. In steady-state kinetic assays, BlaMab exhibited a lower Ki app (0.30 ± 0.03 µM for avibactam and 136 ± 14 µM for relebactam) and a higher acylation rate for avibactam (k2/K = 3.4 × 105 ± 0.4 × 105 M-1 s-1 for avibactam and 6 × 102 ± 0.6 × 102 M-1 s-1 for relebactam). The kcat/Km was nearly 10-fold lower for ceftaroline fosamil (0.007 ± 0.001 µM-1 s-1) than for imipenem (0.056 ± 0.006 µM-1 s-1). Timed mass spectrometry captured complexes of avibactam and BlaMab, LdtMab1, LdtMab2, LdtMab4, and d,d-carboxypeptidase, whereas relebactam bound only BlaMab, LdtMab1, and LdtMab2 Interestingly, LdtMab1, LdtMab2, LdtMab4, LdtMab5, and d,d-carboxypeptidase bound only to imipenem when incubated with imipenem and ceftaroline fosamil. We next determined the binding constants of imipenem and ceftaroline fosamil for LdtMab1, LdtMab2, LdtMab4, and LdtMab5 and showed that imipenem bound >100-fold more avidly than ceftaroline fosamil to LdtMab1 and LdtMab2 (e.g., Ki app or Km of LdtMab1 = 0.01 ± 0.01 µM for imipenem versus 0.73 ± 0.08 µM for ceftaroline fosamil). Molecular modeling indicates that LdtMab2 readily accommodates imipenem, but the active site must widen to ≥8 Å for ceftaroline to enter. Our analysis demonstrates that ceftaroline and imipenem binding to multiple targets (l,d-transpeptidases and d,d-carboxypeptidase) and provides a mechanistic rationale for the effectiveness of this dual ß-lactam combination in M. abscessus infections.


Subject(s)
Mycobacterium abscessus , Peptidyl Transferases , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Carboxypeptidases , Cephalosporins , Imipenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , Ceftaroline
13.
J Biol Chem ; 293(32): 12606-12618, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29909397

ABSTRACT

Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used ß-lactamase inhibitors to counter the activity of metallo-ß-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-ß-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to ∼10 °C increased Tm ) and improved zinc affinity (up to ∼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of ß-lactam antibiotics and zinc deprivation.


Subject(s)
Mutation , Zinc/pharmacology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Anti-Bacterial Agents/metabolism , Crystallography, X-Ray , Enzyme Stability , Humans , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/genetics , beta-Lactamases/isolation & purification
14.
Article in English | MEDLINE | ID: mdl-30348667

ABSTRACT

Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.


Subject(s)
Anti-Bacterial Agents/chemistry , Ceftazidime/chemistry , Imipenem/chemistry , Meropenem/chemistry , Zinc/chemistry , beta-Lactamases/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Catalytic Domain , Cefepime/chemistry , Cefepime/metabolism , Cefotaxime/chemistry , Cefotaxime/metabolism , Ceftazidime/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Imipenem/metabolism , Kinetics , Meropenem/metabolism , Models, Molecular , Piperacillin/chemistry , Piperacillin/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Zinc/metabolism , beta-Lactam Resistance , beta-Lactamases/genetics , beta-Lactamases/metabolism
15.
Article in English | MEDLINE | ID: mdl-30858223

ABSTRACT

Impeding, as well as reducing, the burden of antimicrobial resistance in Gram-negative pathogens is an urgent public health endeavor. Our current antibiotic armamentarium is dwindling, while major resistance determinants (e.g., extended-spectrum ß-lactamases [ESBLs]) continue to evolve and disseminate around the world. One approach to attack this problem is to develop novel therapies that will protect our current agents. AAI101 is a novel penicillanic acid sulfone ß-lactamase inhibitor similar in structure to tazobactam, with one important difference. AAI101 possesses a strategically placed methyl group that gives the inhibitor a net neutral charge, enhancing bacterial cell penetration. AAI101 paired with cefepime, also a zwitterion, is in phase III of clinical development for the treatment of serious Gram-negative infections. Here, AAI101 was found to restore the activity of cefepime against class A ESBLs (e.g., CTX-M-15) and demonstrated increased potency compared to that of piperacillin-tazobactam when tested against an established isogenic panel. The enzymological properties of AAI101 further revealed that AAI101 possessed a unique mechanism of ß-lactamase inhibition compared to that of tazobactam. Additionally, upon reaction with AAI101, CTX-M-15 was modified to an inactive state. Notably, the in vivo efficacy of cefepime-AAI101 was demonstrated using a mouse septicemia model, indicating the ability of AAI101 to bolster significantly the therapeutic efficacy of cefepime in vivo The combination of AAI101 with cefepime represents a potential carbapenem-sparing treatment regimen for infections suspected to be caused by Enterobacteriaceae expressing ESBLs.


Subject(s)
Azabicyclo Compounds/pharmacology , Cefepime/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/metabolism , Piperacillin, Tazobactam Drug Combination/pharmacology , Sulbactam/pharmacology , Triazoles/pharmacology , beta-Lactamase Inhibitors/pharmacology , Spectrometry, Mass, Electrospray Ionization
16.
Article in English | MEDLINE | ID: mdl-29038264

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent ß-lactamases, known as metallo-ß-lactamases (MBLs). Among them, the New Delhi metallo-ß-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity in vivo, overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Zinc/metabolism , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenems/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Enterobacteriaceae Infections/drug therapy , Humans , Microbial Sensitivity Tests/methods , beta-Lactamases/metabolism
17.
Article in English | MEDLINE | ID: mdl-29439972

ABSTRACT

Ceftazidime-avibactam is a "second-generation" ß-lactam-ß-lactamase inhibitor combination that is effective against Enterobacteriaceae expressing class A extended-spectrum ß-lactamases, class A carbapenemases, and/or class C cephalosporinases. Knowledge of the interactions of avibactam, a diazabicyclooctane with different ß-lactamases, is required to anticipate future resistance threats. FOX family ß-lactamases possess unique hydrolytic properties with a broadened substrate profile to include cephamycins, partly as a result of an isoleucine at position 346, instead of the conserved asparagine found in most AmpCs. Interestingly, a single amino acid substitution at N346 in the Citrobacter AmpC is implicated in resistance to the aztreonam-avibactam combination. In order to understand how diverse active-site topologies affect avibactam inhibition, we tested a panel of clinical Enterobacteriaceae isolates producing blaFOX using ceftazidime-avibactam, determined the biochemical parameters for inhibition using the FOX-4 variant, and probed the atomic structure of avibactam with FOX-4. Avibactam restored susceptibility to ceftazidime for most isolates producing blaFOX; two isolates, one expressing blaFOX-4 and the other producing blaFOX-5, displayed an MIC of 16 µg/ml for the combination. FOX-4 possessed a k2/K value of 1,800 ± 100 M-1 · s-1 and an off rate (koff) of 0.0013 ± 0.0003 s-1 Mass spectrometry showed that the FOX-4-avibactam complex did not undergo chemical modification for 24 h. Analysis of the crystal structure of FOX-4 with avibactam at a 1.5-Å resolution revealed a unique characteristic of this AmpC ß-lactamase. Unlike in the Pseudomonas-derived cephalosporinase 1 (PDC-1)-avibactam crystal structure, interactions (e.g., hydrogen bonding) between avibactam and position I346 in FOX-4 are not evident. Furthermore, another residue is not observed to be close enough to compensate for the loss of these critical hydrogen-bonding interactions. This observation supports findings from the inhibition analysis of FOX-4; FOX-4 possessed the highest Kd (dissociation constant) value (1,600 nM) for avibactam compared to other AmpCs (7 to 660 nM). Medicinal chemists must consider the properties of extended-spectrum AmpCs, such as the FOX ß-lactamases, for the design of future diazabicyclooctanes.


Subject(s)
Azabicyclo Compounds/pharmacology , Bacterial Proteins/metabolism , beta-Lactamases/metabolism , Amino Acid Substitution , Ceftazidime/pharmacology , Drug Combinations , Enzyme Activation/drug effects , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Pseudomonas/enzymology
18.
Article in English | MEDLINE | ID: mdl-29530851

ABSTRACT

Pseudomonas aeruginosa is a prevalent and life-threatening Gram-negative pathogen. Pseudomonas-derived cephlosporinase (PDC) is the major inducible cephalosporinase in P. aeruginosa In this investigation, we show that relebactam, a diazabicyclooctane ß-lactamase inhibitor, potently inactivates PDC-3, with a k2/K of 41,400 M-1 s-1 and a koff of 0.00095 s-1 Relebactam restored susceptibility to imipenem in 62% of multidrug-resistant P. aeruginosa clinical isolates, while only 21% of isolates were susceptible to imipenem-cilastatin alone. Relebactam promises to increase the efficacy of imipenem-cilastatin against P. aeruginosa.


Subject(s)
Cephalosporinase/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas/drug effects , Azabicyclo Compounds/pharmacology , Cilastatin/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
19.
Article in English | MEDLINE | ID: mdl-29610205

ABSTRACT

The imipenem-relebactam combination is in development as a potential treatment regimen for infections caused by Enterobacteriaceae possessing complex ß-lactamase backgrounds. Relebactam is a ß-lactamase inhibitor that possesses the diazabicyclooctane core, as in avibactam; however, the R1 side chain of relebactam also includes a piperidine ring, whereas that of avibactam is a carboxyamide. Here, we investigated the inactivation of the Klebsiella pneumoniae carbapenemase KPC-2, the most widespread class A carbapenemase, by relebactam and performed susceptibility testing with imipenem-relebactam using KPC-producing clinical isolates of Enterobacteriaceae MIC measurements using agar dilution methods revealed that all 101 clinical isolates of KPC-producing Enterobacteriaceae (K. pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, Citrobacter koseri, and Escherichia coli) were highly susceptible to imipenem-relebactam (MICs ≤ 2 mg/liter). Relebactam inhibited KPC-2 with a second-order onset of acylation rate constant (k2/K) value of 24,750 M-1 s-1 and demonstrated a slow off-rate constant (koff) of 0.0002 s-1 Biochemical analysis using time-based mass spectrometry to map intermediates revealed that the KPC-2-relebactam acyl-enzyme complex was stable for up to 24 h. Importantly, desulfation of relebactam was not observed using mass spectrometry. Desulfation and subsequent deacylation have been observed during the reaction of KPC-2 with avibactam. Upon molecular dynamics simulations of relebactam in the KPC-2 active site, we found that the positioning of active-site water molecules is less favorable for desulfation in the KPC-2 active site than it is in the KPC-2-avibactam complex. In the acyl complexes, the water molecules are within 2.5 to 3 Å of the avibactam sulfate; however, they are more than 5 to 6 Å from the relebactam sulfate. As a result, we propose that the KPC-2-relebactam acyl complex is more stable than the KPC-2-avibactam complex. The clinical implications of this difference are not currently known.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/antagonists & inhibitors , Imipenem/pharmacology , Klebsiella pneumoniae/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/drug effects , Catalytic Domain/drug effects , Drug Combinations , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Molecular Dynamics Simulation
20.
Article in English | MEDLINE | ID: mdl-28348157

ABSTRACT

PER ß-lactamases are an emerging family of extended-spectrum ß-lactamases (ESBL) found in Gram-negative bacteria. PER ß-lactamases are unique among class A enzymes as they possess an inverted omega (Ω) loop and extended B3 ß-strand. These singular structural features are hypothesized to contribute to their hydrolytic profile against oxyimino-cephalosporins (e.g., cefotaxime and ceftazidime). Here, we tested the ability of avibactam (AVI), a novel non-ß-lactam ß-lactamase inhibitor to inactivate PER-2. Interestingly, the PER-2 inhibition constants (i.e., k2/K = 2 × 103 ± 0.1 × 103 M-1 s-1, where k2 is the rate constant for acylation (carbamylation) and K is the equilibrium constant) that were obtained when AVI was tested were reminiscent of values observed testing the inhibition by AVI of class C and D ß-lactamases (i.e., k2/K range of ≈103 M-1 s-1) and not class A ß-lactamases (i.e., k2/K range, 104 to 105 M-1 s-1). Once AVI was bound, a stable complex with PER-2 was observed via mass spectrometry (e.g., 31,389 ± 3 atomic mass units [amu] → 31,604 ± 3 amu for 24 h). Molecular modeling of PER-2 with AVI showed that the carbonyl of AVI was located in the oxyanion hole of the ß-lactamase and that the sulfate of AVI formed interactions with the ß-lactam carboxylate binding site of the PER-2 ß-lactamase (R220 and T237). However, hydrophobic patches near the PER-2 active site (by Ser70 and B3-B4 ß-strands) were observed and may affect the binding of necessary catalytic water molecules, thus slowing acylation (k2/K) of AVI onto PER-2. Similar electrostatics and hydrophobicity of the active site were also observed between OXA-48 and PER-2, while CTX-M-15 was more hydrophilic. To demonstrate the ability of AVI to overcome the enhanced cephalosporinase activity of PER-2 ß-lactamase, we tested different ß-lactam-AVI combinations. By lowering MICs to ≤2 mg/liter, the ceftaroline-AVI combination could represent a favorable therapeutic option against Enterobacteriaceae expressing blaPER-2 Our studies define the inactivation of the PER-2 ESBL by AVI and suggest that the biophysical properties of the active site contribute to determining the efficiency of inactivation.


Subject(s)
Azabicyclo Compounds/pharmacology , beta-Lactamases/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL