Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
NPJ Vaccines ; 8(1): 161, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880298

ABSTRACT

With the rapid emergence of variants of concern (VOC), the efficacy of currently licensed vaccines has reduced drastically. VOC mutations largely occur in the S1 subunit of Spike. The S2 subunit of SARS-CoV-2 is conserved and thus more likely to elicit broadly reactive immune responses that could improve protection. However, the contribution of the S2 subunit in improving the overall efficacy of vaccines remains unclear. Therefore, we designed, and evaluated the immunogenicity and protective potential of a stabilized SARS-CoV-2 Receptor Binding Domain (RBD) fused to a stabilized S2. Immunogens were expressed as soluble proteins with approximately fivefold higher purified yield than the Spike ectodomain and formulated along with Squalene-in-water emulsion (SWE) adjuvant. Immunization with S2 alone failed to elicit a neutralizing immune response, but significantly reduced lung viral titers in mice challenged with the heterologous Beta variant. In hamsters, SWE-formulated RS2 (a genetic fusion of stabilized RBD with S2) showed enhanced immunogenicity and efficacy relative to corresponding RBD and Spike formulations. Despite being based on the ancestral Wuhan strain of SARS-CoV-2, RS2 elicited broad neutralization, including against Omicron variants (BA.1, BA.5 and BF.7), and the clade 1a WIV-1 and SARS-CoV-1 strains. RS2 elicited sera showed enhanced competition with both S2 directed and RBD Class 4 directed broadly neutralizing antibodies, relative to RBD and Spike elicited sera. When lyophilized, RS2 retained antigenicity and immunogenicity even after incubation at 37 °C for a month. The data collectively suggest that the RS2 immunogen is a promising modality to combat SARS-CoV-2 variants.

2.
Front Immunol ; 13: 890622, 2022.
Article in English | MEDLINE | ID: mdl-35720346

ABSTRACT

Current influenza vaccines need to be updated annually due to mutations in the globular head of the viral surface protein, hemagglutinin (HA). To address this, vaccine candidates have been designed based on the relatively conserved HA stem domain and have shown protective efficacy in animal models. Oligomerization of the antigens either by fusion to oligomerization motifs or display on self-assembling nanoparticle scaffolds, can induce more potent immune responses compared to the corresponding monomeric antigen due to multivalent engagement of B-cells. Since nanoparticle display can increase manufacturing complexity, and often involves one or more mammalian cell expressed components, it is important to characterize and compare various display and oligomerization scaffolds. Using a structure guided approach, we successfully displayed multiple copies of a previously designed soluble, trimeric influenza stem domain immunogen, pH1HA10, on the ferritin like protein, MsDps2 (12 copies), Ferritin (24 copies) and Encapsulin (180 copies). All proteins were expressed in Escherichia coli. The nanoparticle fusion immunogens were found to be well folded and bound to the influenza stem directed broadly neutralizing antibodies with high affinity. An 8.5 Å Cryo-EM map of Msdps2-pH1HA10 confirmed the successful design of the nanoparticle fusion immunogen. Mice immunization studies with the soluble trimeric stem and nanoparticle fusion constructs revealed that all of them were immunogenic, and protected mice against homologous (A/Belgium/145-MA/2009) and heterologous (A/Puerto Rico/8/1934) challenge with 10MLD50 mouse adapted virus. Although nanoparticle display conferred a small but statistically significant improvement in protection relative to the soluble trimer in a homologous challenge, heterologous protection was similar in both nanoparticle-stem immunized and trimeric stem immunized groups. Such rapidly producible, bacterially expressed antigens and nanoparticle scaffolds are useful modalities to tackle future influenza pandemics.


Subject(s)
Influenza Vaccines , Influenza, Human , Nanoparticles , Animals , Ferritins/genetics , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza, Human/prevention & control , Mammals , Mice
3.
Viruses ; 13(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34578291

ABSTRACT

In current seasonal influenza vaccines, neutralizing antibody titers directed against the hemagglutinin surface protein are the primary correlate of protection. These vaccines are, therefore, quantitated in terms of their hemagglutinin content. Adding other influenza surface proteins, such as neuraminidase and M2e, to current quadrivalent influenza vaccines would likely enhance vaccine efficacy. However, this would come with increased manufacturing complexity and cost. To address this issue, as a proof of principle, we have designed genetic fusions of hemagglutinin ectodomains from H3 and H1 influenza A subtypes. These recombinant H1-H3 hemagglutinin ectodomain fusions could be transiently expressed at high yield in mammalian cell culture using Expi293F suspension cells. Fusions were trimeric, and as stable in solution as their individual trimeric counterparts. Furthermore, the H1-H3 fusion constructs were antigenically intact based on their reactivity with a set of conformation-specific monoclonal antibodies. H1-H3 hemagglutinin ectodomain fusion immunogens, when formulated with the MF59 equivalent adjuvant squalene-in-water emulsion (SWE), induced H1 and H3-specific humoral immune responses equivalent to those induced with an equimolar mixture of individually expressed H1 and H3 ectodomains. Mice immunized with these ectodomain fusions were protected against challenge with heterologous H1N1 (Bel/09) and H3N2 (X-31) mouse-adapted viruses with higher neutralizing antibody titers against the H1N1 virus. Use of such ectodomain-fused immunogens would reduce the number of components in a vaccine formulation and allow for the inclusion of other protective antigens to increase influenza vaccine efficacy.


Subject(s)
Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Protection/immunology , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Vaccine Efficacy , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
4.
ACS Infect Dis ; 7(8): 2546-2564, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34260218

ABSTRACT

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


Subject(s)
COVID-19 , Thermotolerance , Animals , Antibodies, Viral , COVID-19/therapy , Guinea Pigs , HEK293 Cells , Humans , Immunization, Passive , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL