Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Org Biomol Chem ; 22(27): 5636-5645, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38912576

ABSTRACT

Herein we report a transition-metal free, base-mediated 1,6-conjugate addition of aryldiazenes to para-quinone methides (p-QMs). Arylhydrazines were used for the in situ generation of aryldiazenes using a base-mediated protocol in the presence of air as the oxidant. The 1,6-conjugate addition of aryldiazenes to para-quinone methides via a radical mechanism is followed by an oxidative rearrangement to furnish the desired product, arylhydrazones. Interestingly, our synthetic protocol results in the formation of an aryldiazene radical, which undergoes 1,6-conjugate addition with p-QMs to furnish the arylhydrazones.

2.
J Appl Microbiol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38211971

ABSTRACT

AIM: The primary objective of this study was to elucidate the putative cell wall-associated targets of compound 6i, a glycoconjugate of eugenol, in Aspergillus fumigatus, while also evaluating its toxicity and assessing histopathologic alterations in the liver, heart, and kidney of compound 6i-treated embryos using an in ovo model. METHOD: To achieve this aim, compound 6i was synthesized, and a series of biochemical assays were performed to determine its impact on the fungal cell wall. Additionally, qRT-PCR and LC-MS/MS analyses were conducted to investigate changes in gene and protein expression profiles associated with melanin biosynthesis, conidiation, siderophore production, transcriptional regulation of ß-glucan biosynthesis, and calcineurin activity in A. fumigatus. RESULTS: The experimental findings revealed that compound 6i exhibited notable antifungal activity against A. fumigatus by perturbing cell wall integrity, hindering ergosterol, glucan, and chitin biosynthesis, and inhibiting catalase production. Moreover, relative gene expression and proteomic analyses demonstrated that compound 6i exerted both down-regulatory and up-regulatory effects on several crucial genes and proteins involved in the aforementioned fungal processes. Furthermore, increased expression of oxidative stress-related proteins was observed in the presence of compound 6i. Notably, the glycoconjugate of eugenol did not elicit cytotoxicity in the liver, heart, and kidney of chick embryos. CONCLUSION: The current investigation elucidated the multifaceted mechanisms by which compound 6i exerts its antifungal effects against A. fumigatus, primarily through targeting cell wall components and signaling pathways. These findings underscore the potential of the eugenol glycoconjugate as a promising antifungal candidate, warranting further exploration and development for combating A. fumigatus infections.

3.
Beilstein J Org Chem ; 19: 204-211, 2023.
Article in English | MEDLINE | ID: mdl-36865024

ABSTRACT

The total synthesis of racemic incarvilleatone has been achieved by utilizing unexplored accelerated Rauhut-Currier (RC) dimerization. The other key steps of the synthesis are oxa-Michael and aldol reactions in a tandem sequence. Racemic incarvilleatone was separated by chiral HPLC and the configuration of each enantiomer was determined by single-crystal X-ray analysis. In addition, a one-pot synthesis of (±)-incarviditone has been achieved from rac-rengyolone by using KHMDS as a base. We have also assessed the anticancer activity of all the synthesized compounds in breast cancer cells nonetheless, they exhibited very limited growth suppression activity.

4.
Arch Microbiol ; 204(4): 214, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35314887

ABSTRACT

Aspergillus fumigatus is one of the major pathogenic fungal species, causing life-threatening infections. Due to a limited spectrum of available antifungals, exploration of new drug targets as well as potential antifungal molecules has become pertinent. Rodlet layer plays an important role in adherence of fungal conidia to hydrophobic cell surfaces in host, which also leads to A. fumigatus biofilm formation, contributing factor to fungal pathogenicity. From decades, natural sources have been known for the development of new active molecules. The present study investigates effect of isoeugenol on genes responsible for hydrophobins (RodA), adhesion as well as biofilm formation (MedA and SomA) of A. fumigatus. Minimum inhibitory concentrations (MIC and IC50) of isoeugenol against A. fumigatus were determined using broth microdilution assay. The IC50 results showed reduced hydrophobicity and biofilm formation as well as eradication after treatment with the compound and electron micrograph data corroborated these findings. The qRT-PCR showed a significant downregulation of genes RodA, MedA, SomA and pksP involved in hydrophobicity and biofilm formation. SwissADME studies potentiated drug-like propensity for isoeugenol which formed four hydrogen bonds with low binding energy (- 4.54 kcal/mol) at the catalytic site of RodA protein studied via AutoDock4. Hence, the findings conclude that isoeugenol inhibits conidial hydrophobicity and biofilm formation of A. fumigatus and further investigations are warranted in this direction.


Subject(s)
Aspergillus fumigatus , Fungal Proteins , Aspergillus fumigatus/genetics , Biofilms , Eugenol/analogs & derivatives , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/genetics , Spores, Fungal/metabolism
5.
Org Biomol Chem ; 18(12): 2252-2263, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32149317

ABSTRACT

Glycoconjugates, due to their diverse functions, are widely regarded as biologically important molecules. Artemisinic acid 1 occurs naturally in the plant Artemisia annua and is considered to be the biogenetic precursor of the antimalarial drug, artemisinin 2. We report herein the design and synthesis of diverse artemisinic acid derived glycoconjugates. We have synthesized 12-O-artemisinic acid-glycoconjugates (7a-k) and 12-N-artemisinic acid-glycoconjugates (8a-k) by utilizing Cu(i)-catalyzed azide-alkyne cycloaddition reactions (Click chemistry) with various synthesized sugar azides (6a-k) in good to excellent yields along with two fluorescently labeled compounds, 12-O-artemisinic acid-glycoconjugate 11 and 12-N-artemisinic acid-glycoconjugate 12, to investigate the mode of action of these compounds in biological systems. All the synthesized artemisinic acid glycoconjugates were assayed for their efficacy against the MCF7 cell line. Our anticancer studies indicated that all the synthesized compounds inhibited the growth of MCF7 cells in a dose dependent manner, barring compounds 4 and 7d. However, these compounds exhibit moderate cytotoxicity, as is evident from their IC50 values.


Subject(s)
Antineoplastic Agents/chemical synthesis , Artemisinins/chemistry , Glycoconjugates/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Azides/chemistry , Click Chemistry , Cycloaddition Reaction , Drug Design , Drug Screening Assays, Antitumor , Glycoconjugates/pharmacology , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Sesquiterpenes/chemistry
6.
Org Biomol Chem ; 16(3): 444-451, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29265145

ABSTRACT

An efficient, transition-metal free and direct C-arylation of 3-hydroxychromone moieties in the presence of a base, air as an oxidant and arylhydrazines as arylating agents to furnish highly biologically active flavonols or 3-hydroxyflavones has been developed. We have further extended our methodology for the C-arylation of the 5-hydroxy pyran-4-one moiety. The role of the free hydroxyl group towards C-arylation has been delineated.

8.
Chem Asian J ; 18(8): e202300162, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36867394

ABSTRACT

In recent years, C-H bond functionalization has emerged as a pivotal tool for late-stage functionalization of complex natural products for the synthesis of potent biologically active derivatives. Artemisinin and its C-12 functionalized semi-synthetic derivatives are well-known clinically used anti-malarial drugs due to the presence of the essential 1,2,4-trioxane pharmacophore. However, in the wake of parasite developing resistance against artemisinin-based drugs, we conceptualized the synthesis of C-13 functionalized artemisinin derivatives as new antimalarials. In this regard, we envisaged that artemisinic acid could be a suitable precursor for the synthesis of C-13 functionalized artemisinin derivatives. Herein, we report C-13 arylation of artemisinic acid, a sesquiterpene acid and our attempts towards synthesis of C-13 arylated artemisinin derivatives. However, all our efforts resulted in the formation of a novel ring-contracted rearranged product. Additionally, we have extended our developed protocol for C-13 arylation of arteannuin B, a sesquiterpene lactone epoxide considered to be the biogenetic precursor of artemisinic acid. Indeed, the synthesis of C-13 arylated arteannuin B renders our developed protocol to be effective in sesquiterpene lactone as well.


Subject(s)
Antimalarials , Artemisinins , Sesquiterpenes , Antimalarials/pharmacology , Antimalarials/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Lactones , Alkenes/chemistry
9.
ChemMedChem ; 18(9): e202300013, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36852543

ABSTRACT

Eugenol and isoeugenol, secondary metabolites isolated from the plant Myristica fragrans have displayed antifungal activities against Aspergillus fumigatus (IC50 1900 µM). Compounds having conjugated unsaturation have been of great use as antifungals i. e. amphotericin B, nystatin and terbinafine etc. Hence, in the present study, we have designed and synthesised 1,3-diynes by utilizing Glaser-Hay and Cadiot-Chodkiewicz coupling reactions to furnish possible antifungal agents. Synthesis of 1,6-diphenoxyhexa-2,4-diyne derivatives was achieved by Cu(I) catalysed coupling of propargylated eugenol, isoeugenol, guaiacol, vanillin and dihydrogenated eugenol or eugenol in good to excellent yields. All the synthesized compounds were evaluated against pathogenic fungus A. fumigatus. Among all the synthesized compounds, one of the compounds was found to be exhibiting promising antifungal activity with IC50 value of 7.75 µM thereby suggesting that this type of scaffold could pave the way for developing new antifungal agents. The most active compound was found to be low cytotoxic when assayed against L-132 cancer cell line. Effect of the most active compound on ergosterol biosynthesis has also been studied. Also, the most active compound exhibited significant anti-biofilm activity although the concentration was found to be higher than its anti-fungal activity. Morphological changes in the biofilm were remarkable under confocal laser scanning microscopy.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolism , Diynes/pharmacology , Microbial Sensitivity Tests
10.
11.
RSC Adv ; 12(51): 33021-33031, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425185

ABSTRACT

Glucal and galactal are transformed into 2-deoxyglycolactams, which are important building blocks in the synthesis of biologically active piperidine alkaloids, fagomine and 4-epi-fagomine. In one of the strategies, reduction of 2-deoxyglycolactam-N-Boc carbonyl by lithium triethylborohydride (Super-Hydride®) has been exploited to generate lactamol whereas reduction followed by dehydration was utilized as the other strategy to functionalize the C1-C2 bond in the iminosugar substrate. The strategies provide the formal synthesis of 2-deoxynojirimycin, nojirimycin and nojirimycin B. DFT studies were carried out to determine the reason for the failure of the formation of the 2-deoxygalactonojirimycin derivative. Further, DFT studies suggest that phenyl moieties of protecting groups and lone pairs of oxygen in carbamate group plays a vital role in deciphering the conformational space of the reaction intermediates and transition-state structures through cation-π or cation-lone pair interactions. The influence of these interactions is more pronounced at low temperature when the entropy factor is small.

12.
RSC Med Chem ; 13(8): 955-962, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36092146

ABSTRACT

Glycoconjugates are biologically significant molecules as they tend to serve a wide range of intra- and extra-cellular processes depending on their size and complexity. The secondary metabolites of the plant Myristica fragrans, eugenol and isoeugenol, have shown antifungal activities (IC50 1900 µM). Therefore, we envisioned that glycoconjugates based on these two scaffolds could prove to be potent antifungal agents. Triazole-containing compounds have shown prominent activities as antifungal agents. Based on this, we opined that a Cu(i) catalyzed click reaction could serve as the bridging tool between a eugenol/isoeugenol moiety and sugars to synthesize eugenol/isoeugenol based glycoconjugates. In our present work, we have coupled propargylated eugenol/isoeugenol and azido sugar to furnish eugenol/isoeugenol based glycoconjugates. In another approach, we have carried out hydroxylation of the double bond of eugenol and subsequent azidation of a primary alcohol followed by intramolecular coupling reactions leading to various other analogues. All the synthesized compounds were assayed against an opportunistic pathogenic fungus, Aspergillus fumigatus. Among the synthesized compounds, two analogues have exhibited significant antifungal activities with IC50 values of 5.42 and 9.39 µM, respectively. The study suggested that these two analogues inhibit cell wall-associated melanin hydrophobicity along with the number of conidia. The synthesized compounds were found to be non-cytotoxic to an untransformed cell line.

13.
Org Biomol Chem ; 9(15): 5407-13, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21584307

ABSTRACT

A novel one-pot route for the synthesis of benzodiazepinyl phosphonates (BDPs) has been achieved. FeCl(3) efficiently catalyzed four-component condensation of diamines, acetone and phosphites in the presence of molecular sieves to furnish BDPs as novel chemical entities with good yield. The synthesized BDPs have shown significant protease inhibition activity against clostripain, a disease model for gas gangrene, suggesting that these novel chemical entities could be further explored as cysteine protease inhibitors.


Subject(s)
Chlorides/chemistry , Cysteine Endopeptidases/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Ferric Compounds/chemistry , Organophosphonates/chemical synthesis , Catalysis , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Molecular Structure , Organophosphonates/chemistry , Organophosphonates/pharmacology
14.
Bioorg Med Chem ; 19(23): 7129-35, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22019466

ABSTRACT

We report herein, design and synthesis of vinylaminophosphonates, a novel class of compounds as possible cysteine protease inhibitors. The synthesis of vinylaminophosphonates has been accomplished employing Tsuji-Trost reaction as a key step. The synthesized compounds were assayed against papain, a model cysteine protease and some of our synthesized compounds showed IC(50) values in the range of 30-54 µM thereby suggesting that these chemical entities thus could constitute an interesting template for the design of potential novel protease inhibitors.


Subject(s)
Cysteine Proteinase Inhibitors/chemistry , Organophosphonates/chemistry , Organophosphonates/pharmacology , Peptides/chemistry , Peptides/pharmacology , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Structure , Organophosphonates/chemical synthesis , Peptides/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Vinyl Compounds/chemical synthesis , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
15.
Eur J Med Chem ; 220: 113454, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33901900

ABSTRACT

Artemisinin-based combination therapies (ACTs) have been able to reduce the clinical and pathological malaria cases in endemic areas around the globe. However, recent reports have shown a progressive decline in malaria parasite clearance in South-east Asia after ACT treatment, thus envisaging a need for new artemisinin (ART) derivatives and combinations. To address the emergence of drug resistance to current antimalarials, here we report the synthesis of artemisinin-peptidyl vinyl phosphonate hybrid molecules that show superior efficacy than artemisinin alone against chloroquine-resistant as well as multidrug-resistant Plasmodium falciparum strains with EC50 in pico-molar ranges. Further, the compounds effectively inhibited the survival of ring-stage parasite for laboratory-adapted artemisinin-resistant parasite lines as compared to artemisinin. These hybrid molecules showed complete parasite clearance in vivo using P. berghei mouse malaria model in comparison to artemisinin alone. Studies on the mode of action of hybrid molecules suggested that these artemisinin-peptidyl vinyl phosphonate hybrid molecules possessed dual activities: inhibited falcipain-2 (FP-2) activity, a P. falciparum cysteine protease involved in hemoglobin degradation, and also blocked the hemozoin formation in the food-vacuole, a step earlier shown to be blocked by artemisinin. Since these hybrid molecules blocked multiple steps of a pathway and showed synergistic efficacies, we believe that these lead compounds can be developed as effective antimalarials to prevent the spread of resistance to current antimalarials.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Multiple/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Artemisinins/chemical synthesis , Artemisinins/chemistry , Artemisinins/pharmacology , Cysteine Endopeptidases/metabolism , Dose-Response Relationship, Drug , Heme/antagonists & inhibitors , Heme/metabolism , Malaria/metabolism , Molecular Structure , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Organophosphonates/pharmacology , Parasitic Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Polymerization/drug effects , Structure-Activity Relationship , Vinyl Compounds/chemical synthesis , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
16.
ACS Omega ; 5(45): 29025-29037, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225134

ABSTRACT

Racemic and enantioselective syntheses of γ-phenyl-γ-amino vinyl phosphonates and sulfones have been achieved using Horner-Wadsworth-Emmons olefination of trityl protected α-phenyl-α-amino aldehydes with tetraethyl methylenediphosphonate and diethyl ((phenylsulfonyl)methyl)phosphonate, respectively, without any racemization. The present strategy has also been successfully applied to the synthesis of peptidyl vinyl phosphonate and peptidyl vinyl sulfone derivatives as potential cysteine protease inhibitors of Chagas disease, K11002, with 100% de. The developed synthetic protocol was further utilized to synthesize hybrid molecules consisting of artemisinin as an inhibitor of major cysteine protease falcipain-2 present in the food vacuole of the malarial parasite. The synthesized artemisinin-dipeptidyl vinyl sulfone hybrid compounds showed effective in vitro inhibition of falcipain-2 and potent parasiticidal efficacies against Plasmodium falciparum in nanomolar ranges. Overall, the developed synthetic protocol could be effectively utilized to design cysteine protease inhibitors not only as novel antimalarial compounds but also to be involved in other life-threatening diseases.

17.
Bioorg Med Chem Lett ; 19(19): 5590-3, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19717302

ABSTRACT

A simple and expedient method for the synthesis of a series of 14-aryl-14H-dibenzo[a.j]xanthenes is described through a one-pot condensation of beta-naphthol with aryl aldehydes catalysed by TaCl5 under solvent-free conventional heating. The major advantages of the present method are: high yields, less reaction time, solvent-free condition and easy purification of the products. The synthesized 14-aryl-14H-dibenzo[a.j]xanthenes were evaluated against a panel of six human cancer lines of different tissues. Synthesized compound 3o showed IC50 of 37.9 and 41.3 microM against Colo-205 and 502713, respectively, whereas 3g showed IC50 of 41.9 microM against Colo-205.


Subject(s)
Cytotoxins/chemical synthesis , Xanthenes/chemical synthesis , Aldehydes/chemistry , Catalysis , Cell Line, Tumor , Chlorides/chemistry , Cytotoxins/chemistry , Cytotoxins/toxicity , Drug Screening Assays, Antitumor , Humans , Naphthols/chemistry , Tantalum/chemistry , Xanthenes/chemistry , Xanthenes/toxicity
18.
ACS Omega ; 4(27): 22549-22556, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31909338

ABSTRACT

(-)-5-Hydroxygoniothalamin, (-)-5-acetylgoniothalamin, and (+)-5-hydroxygoniothalamin, isolated from the Goniothalamus genus, are synthesized from triacetyl-O-d-glucal by employing the Ferrier reaction, Mitsunobu reaction, and Jones oxidation as key steps. The synthetic procedure also yields the epimers of (-)-5-hydroxygoniothalamin and (+)-5-hydroxygoniothalamin employing acid-mediated transition-metal-free epimerization at C-5 of styryllactones. Further studies reveal that the epimerization is facilitated by the phenyl group present on the styryllactones. Also, depending on the dihydroxylation reaction conditions, various analogues of saturated styryllactones are synthesized utilizing oxa-Michael reaction conditions.

19.
J Ayurveda Integr Med ; 10(3): 166-170, 2019.
Article in English | MEDLINE | ID: mdl-29398410

ABSTRACT

BACKGROUND: There has been enormous curiosity in the development of alternative plant based medicines to control diabetes, oxidative stress and related disorders. One of the therapeutic approaches is to reduce postprandial release of glucose in the blood. Two key enzymes that are involved in reducing postprandial glucose are α-amylase and α-glucosidase. Mentha arvensis L. has been traditionally used by several tribes as a medicinal plant to treat various disorders. OBJECTIVE: The present study was undertaken to test M. arvenisis L. for inhibition of postprandial hyperglycemia. MATERIAL AND METHOD: We performed various in vitro and in vivo tests to evaluate efficacy of M. arvenisis L. for antidiabetic activity (postprandial hyperglycemia). RESULTS: Methanolic extract of M. arvensis L. leaves showed DPPH free radical scavenging activity (more than 78% µg/µl) and high antiglycation potential (more than 90% inhibition of AGE formation). Methanolic extract also showed remarkable inhibitory effects on α-amylase (more than 50% µg/µl) and α-glucosidase (68% µg/µl) and significant inhibition of postprandial hyperglycemia in starch induced diabetic Wistar rats. CONCLUSION: The non-insulin dependent antidiabetic or inhibition of postprandial hyperglycemic activity of methanolic extract of M. arvensis L. leaves was shown by using in vitro and in vivo approaches in the present study.

20.
J Ayurveda Integr Med ; 10(1): 4-11, 2019.
Article in English | MEDLINE | ID: mdl-29636214

ABSTRACT

BACKGROUND: Urolithiasis is the third common disorder of the urinary system affecting 10-15% of the general population. In recent years, search for new antilithiatic drugs from natural sources has assumed greater importance. OBJECTIVES: This study was performed to investigate the anti-urolithiatic activity of methanolic extract of Duranta erecta leaves by in vitro and in vivo analysis. MATERIALS AND METHODS: The study was designed to determine presence of phytochemicals in D. erecta, its yield in percentage, antioxidant activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and anti-microbial property against few bacteria. In vitro analysis was carried out study anti-urolithiatic property of D. erecta by nucleation assay and synthetic urine assay for inhibition of calcium oxalate and calcium oxalate monohydrate crystals formation. An in vivo experiment was performed on Wistar rats for confirmation of anti-urolithiatic property of D. erecta in animal model. RESULTS: D. erecta has the presence of primary and secondary metabolites like glycoside, saponins, sterols, flavonoids, phenols, tannins, alkaloids, carbohydrates and proteins. Methanolic extract of D. erecta gave a very good yield (60%). D. erecta proved its antioxidant potential by 93.51% inhibition of DPPH radical at a concentration of 1000 µg/mL where ascorbic showed 94.71% of DPPH radical at the same concentration. In vitro tests like nucleation assay and synthetic urine assay showed that D. erecta inhibits formation of calcium oxalate and calcium oxalate monohydrate crystals. It also showed the anti-microbial property by formation of zone of inhibition against few bacteria. An in vivo experiment on Wistar rat animal model confirmed the anti-urolithiatic property of D. erecta L. leaves extract. CONCLUSIONS: Based on the results, we reported that D. erecta may treat calcium oxalate crystal deposition in the kidney by preventing hyperoxaluria-induced peroxidative damage to the renal tubular membrane surface (lipid peroxidation). It has anti-microbial potential so it may also inhibit the secondary bacterial infection in kidney. Based on the data, it can be concluded that this herb can be used as a potential anti-urolithiasis agent for kidney stone removal.

SELECTION OF CITATIONS
SEARCH DETAIL