Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Exp Cell Res ; 425(1): 113511, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36796745

ABSTRACT

In the gonads of mammalian XY embryos, the organization of cords is the hallmark of testis development. This organization is thought to be controlled by interactions of the Sertoli cells, endothelial and interstitial cells with little or no role of germ cells. Challenging this notion, herein we show that the germ cells play an active role in the organization of the testicular tubules. We observed that the LIM-homeobox gene, Lhx2 is expressed in the germ cells of the developing testis between E12.5-E15.5. In Lhx2 knockout-fetal testis there was altered expression of several genes not just in germ cells but also in the supporting (Sertoli) cells, endothelial cells, and interstitial cells. Further, loss of Lhx2 led to disrupted endothelial cell migration and expansion of interstitial cells in the XY gonads. The cords in the developing testis of Lhx2 knockout embryos are disorganized with a disrupted basement membrane. Together, our results show an important role of Lhx2 in testicular development and imply the involvement of germ cells in the tubular organization of the differentiating testis. The preprint version of this manuscript is available at https://doi.org/10.1101/2022.12.29.522214.


Subject(s)
Endothelial Cells , Testis , Mice , Male , Animals , Testis/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Sertoli Cells/metabolism , Germ Cells , Mammals , Transcription Factors/genetics , Transcription Factors/metabolism
3.
J Leukoc Biol ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219468

ABSTRACT

In this study, we report on longitudinal kinetics of cellular immune subsets following SARS-CoV-2 infection in a cohort of hospitalized individuals and evaluate the interplay of these profiles with infecting viral variants, humoral immunity including neutralizing responses, vaccination history and clinical outcomes. A cohort of 121 SARS-CoV-2 infected individuals exhibiting varying disease states were prospectively evaluated for lymphopenic profiles, anti-viral humoral responses and infecting viral variants for a period of up to 90 days spanning the period, February 2021-January 2022 (2nd and 3rd waves of infection). A total of 51 participants received at least one vaccine dose of indigenous vaccines (Covishield or Covaxin) prior to recruitment. When stratified in terms of mortality, B and NK cells, in contrast to the T cell compartment, did not recover from nadir levels in non-survivors who were largely unvaccinated. No discriminatory signature was identified for non-survivors in terms of anti-NC or anti-S1-RBD IgG CLIA profiles including GenScript S1-RBD assays. Evaluation of sVCAM and sMAdCAM revealed opposing dynamics that correlated with disease severity and convalescence respectively. Viral variant analysis revealed delta and omicron variants to comprise majority of the infections which reflected national transmission kinetics during the period of recruitment. Our results demonstrate the importance of monitoring circulating biomarkers for convalescence as well as mortality in COVID-19 progression. Delta variants of SARS-CoV-2 clearly demonstrated increased pathogenicity and warrants sustained viral surveillance for re-emergence of these strains. Our findings with respect to vaccination advocate for continued vaccine development and administration of COVID-19 vaccines.

4.
Steroids ; 184: 109036, 2022 08.
Article in English | MEDLINE | ID: mdl-35413338

ABSTRACT

Substantial data posit estrogen receptors (ERs) as promising targets for prostate cancer (PCa) therapeutics. However, the trials on assessing the chemo-preventive or therapeutic potential of ER targeting drugs or selective estrogen receptor modulators (SERMs) have not yet established their clinical benefits. This could be ascribed to a possible modulation in the ER expression during PCa progression. Further it is warranted to test various ER targeting drugs in appropriate preclinical models that simulate human ER expression pattern during PCa progression. The study was undertaken to revisit the existing data on the epithelial ER expression pattern in human cancerous prostates and experimentally determine whether these patterns are replicated in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice, a model for human PCa. Estradiol (E2) binding to the plasma membrane of the epithelial cells and its modulation during the PCa progression in TRAMP were also investigated. A reassessment of the existing data revealed a trend towards downregulation in the epithelial expression of wild-type ESR1 transcripts in high-grade PCa, compared to non-cancerous prostate in humans. Next, epithelial cell-enriched populations from TRAMP prostates (TP) displaying low-grade prostatic intraepithelial neoplasia (LGPIN), high-grade PIN (HGPIN), HGPIN with well-differentiated carcinoma (PIN + WDC), WDC (equivalent to grade 2/3 human PCa), and poorly-differentiated carcinoma (PDC-equivalent to grade 4/5 human PCa) revealed significantly higher Esr1 and Esr2 levels in HGPIN and significantly reduced levels in WDC, compared to respective age-matched control prostates. These patterns for the nuclear ERs were similar to the trend shown by E2 binding to the plasma membrane of the epithelial cells during PCa progression in TRAMP. E2 binding to epithelial cells (EpCAM+), though significantly higher in TPs displaying LGPIN, decreased significantly as the disease progressed to WDC. The study highlights a reduction in the epithelial ESR level with the PCa progression and this pattern was evident in both humans and TRAMP. These observations may have major implications in refining PCa therapeutics targeting ER.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Animals , Disease Progression , Epithelial Cells/metabolism , Estrogens/metabolism , Humans , Male , Mice , Prostate/metabolism , Prostate/pathology , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
5.
J Leukoc Biol ; 111(6): 1287-1295, 2022 06.
Article in English | MEDLINE | ID: mdl-35075682

ABSTRACT

Immune cell dysregulation and lymphopenia characterize COVID-19 pathology in moderate to severe disease. While underlying inflammatory factors have been extensively studied, homeostatic and mucosal migratory signatures remain largely unexplored as causative factors. In this study, we evaluated the association of circulating IL-6, soluble mucosal addressin cell adhesion molecule (sMAdCAM), and IL-15 with cellular dysfunction characterizing mild and hypoxemic stages of COVID-19. A cohort of SARS-CoV-2 infected individuals (n = 130) at various stages of disease progression together with healthy controls (n = 16) were recruited from COVID Care Centres (CCCs) across Mumbai, India. Multiparametric flow cytometry was used to perform in-depth immune subset characterization and to measure plasma IL-6 levels. sMAdCAM, IL-15 levels were quantified using ELISA. Distinct depletion profiles, with relative sparing of CD8 effector memory and CD4+ regulatory T cells, were observed in hypoxemic disease within the lymphocyte compartment. An apparent increase in the frequency of intermediate monocytes characterized both mild as well as hypoxemic disease. IL-6 levels inversely correlated with those of sMAdCAM and both markers showed converse associations with observed lympho-depletion suggesting opposing roles in pathogenesis. Interestingly, IL-15, a key cytokine involved in lymphocyte activation and homeostasis, was detected in symptomatic individuals but not in healthy controls or asymptomatic cases. Further, plasma IL-15 levels negatively correlated with T, B, and NK count suggesting a compensatory production of this cytokine in response to the profound lymphopenia. Finally, higher levels of plasma IL-15 and IL-6, but not sMAdCAM, were associated with a longer duration of hospitalization.


Subject(s)
COVID-19 , Interleukin-15/blood , Lymphopenia , CD8-Positive T-Lymphocytes , Cell Adhesion Molecules , Cytokines , Humans , Interleukin-6 , Lymphopenia/etiology , SARS-CoV-2
6.
Front Immunol ; 12: 651122, 2021.
Article in English | MEDLINE | ID: mdl-33828560

ABSTRACT

Integrin α4ß7 expressing CD4+ T cells are preferred targets for HIV infection and are thought to be predictors of disease progression. Concurrent analysis of integrin α4ß7 expressing innate and adaptive immune cells was carried out in antiretroviral (ART) therapy naïve HIV infected women in order to determine its contribution to HIV induced immune dysfunction. Our results demonstrate a HIV infection associated decrease in the frequency of integrin α4ß7 expressing endocervical T cells along with an increase in the frequency of integrin α4ß7 expressing peripheral monocytes and central memory CD4+ T cells, which are considered to be viral reservoirs. We report for the first time an increase in levels of soluble MAdCAM-1 (sMAdCAM-1) in HIV infected individuals as well as an increased frequency and count of integrin ß7Hi CD8+ memory T cells. Correlation analysis indicates that the frequency of effector memory CD8+ T cells expressing integrin α4ß7 is associated with levels of both sMAdCAM-1 and TGF-ß1. The results of this study also suggest HIV induced alterations in T cell homeostasis to be on account of disparate actions of sMAdCAM-1 and TGF-ß1 on integrin α4ß7 expressing T cells. The immune correlates identified in this study warrant further investigation to determine their utility in monitoring disease progression.


Subject(s)
Cell Adhesion Molecules/blood , HIV Infections/immunology , HIV-1/immunology , Mucoproteins/blood , T-Lymphocytes, Cytotoxic/immunology , Transforming Growth Factor beta1/blood , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , Cell Adhesion Molecules/immunology , Disease Progression , Female , HIV Infections/blood , HIV Infections/virology , Humans , Integrins/metabolism , Lymphocyte Count , Middle Aged , Mucoproteins/immunology , T-Lymphocytes, Cytotoxic/metabolism , Transforming Growth Factor beta1/immunology , Young Adult
7.
Int J Infect Dis ; 106: 395-400, 2021 May.
Article in English | MEDLINE | ID: mdl-33852938

ABSTRACT

BACKGROUND: India bears the second largest burden of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. A multitude of reverse transcription polymerase chain reaction (RT-PCR) detection assays with disparate gene targets, including automated high-throughput platforms, are available. Varying concordance and interpretation of diagnostic results in this setting can result in significant reporting delays, leading to suboptimal disease management. This article reports the development of a novel ORF1a-based SARS-CoV-2 RT-PCR assay - Viroselect - that shows high concordance with conventional assays and the ability to resolve inconclusive results generated during the peak of the epidemic in Mumbai, India. METHODS: A unique target region within SARS-CoV-2 ORF1a - the non-structural protein 3 (nsp3) region - was used to design and develop the assay. This hypervariable region (1923-3956) between SARS-CoV-2, SARS-CoV-1 and Middle East respiratory syndrome coronavirus was utilized to design the primers and probes for the RT-PCR assay. The concordance of this assay with commonly used emergency use authorization (US Food and Drug Administration) manual kits and an automated high-throughput testing platform was evaluated. Further, a retrospective analysis was carried out using Viroselect on samples reported as 'inconclusive' between April and October 2020. RESULTS: In total, 701 samples were tested. Concordance analysis of 477 samples demonstrated high overall agreement of Viroselect with both manual (87.6%) and automated (84.7%) assays. Also, in the retrospective analysis of 224 additional samples reported as 'inconclusive', Viroselect was able to resolve 100% (19/19) and 93.7% (192/205) of samples which had inconclusive results on manual and automated high-throughput platforms, respectively. CONCLUSION: Viroselect had high concordance with conventional assays, both manual and automated, and has potential to resolve inconclusive samples.


Subject(s)
COVID-19 Testing/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Viral Proteins/genetics , Humans , Limit of Detection , Polyproteins/genetics , Retrospective Studies , SARS-CoV-2/isolation & purification
8.
Front Immunol ; 12: 619906, 2021.
Article in English | MEDLINE | ID: mdl-34194420

ABSTRACT

The role of sMAdCAM, an important gut immune migratory marker, remains unexplored in COVID-19 pathogenesis considering recent studies positing the gut as a sanctuary site for SARS-CoV-2 persistence. Thus, assimilating profiles of systemic inflammatory mediators with sMAdCAM levels may provide insights into the progression of COVID-19 disease. Also, the role of these markers in governing virus specific immunity following infection remains largely unexplored. A cohort (n = 84) of SARS-C0V-2 infected individuals included a group of in-patients (n = 60) at various stages of disease progression together with convalescent individuals (n = 24) recruited between April and June 2020 from Mumbai, India. Follow-up of 35 in-patients at day 7 post diagnosis was carried out. Th1/Th2/Th17 cytokines along with soluble MAdCAM (sMAdCAM) levels in plasma were measured. Also, anti-viral humoral response as measured by rapid antibody test (IgG, IgM), Chemiluminescent Immunoassay (IgG), and antibodies binding to SARS-CoV-2 proteins were measured by Surface Plasmon Resonance (SPR) from plasma. IL-6 and sMAdCAM levels among in-patients inversely correlated with one another. When expressed as a novel integrated marker-sMIL index (sMAdCAM/IL-6 ratio)-these levels were incrementally and significantly higher in various disease states with convalescents exhibiting the highest values. Importantly, sMAdCAM levels as well as sMIL index (fold change) correlated with peak association response units of receptor binding domain and fold change in binding to spike respectively as measured by SPR. Our results highlight key systemic and gut homing parameters that need to be monitored and investigated further to optimally guide therapeutic and prophylactic interventions for COVID-19.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/blood , Interleukin-6/blood , Mucoproteins/blood , Adolescent , Adult , Aged , Biomarkers/blood , COVID-19/physiopathology , Cohort Studies , Cytokines/blood , Disease Progression , Female , Humans , Intestines/immunology , Male , Middle Aged , Surface Plasmon Resonance , Young Adult , COVID-19 Drug Treatment
9.
Front Immunol ; 11: 182, 2020.
Article in English | MEDLINE | ID: mdl-32194543

ABSTRACT

Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ T CM ) compartment. In addition, CD4+ TCM preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.


Subject(s)
Disease Progression , HIV Long-Term Survivors , HIV Seropositivity/immunology , HIV-1/immunology , Homeostasis/immunology , Adolescent , Adult , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , Female , Genotype , HIV Seropositivity/blood , HIV Seropositivity/virology , HIV-1/genetics , Humans , Interleukin-7/blood , Male , Middle Aged , Receptors, Interleukin-7/metabolism , T-Lymphocytes, Regulatory/immunology , Viral Load , Viremia/immunology , Virus Replication , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL