Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 562
Filter
Add more filters

Publication year range
1.
Immunity ; 57(6): 1289-1305.e9, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38772366

ABSTRACT

Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.


Subject(s)
Adipose Tissue , Homeostasis , Insulin Resistance , Lymphocytes , Mitochondria , Obesity , Programmed Cell Death 1 Receptor , Protein Serine-Threonine Kinases , Animals , Insulin Resistance/immunology , Programmed Cell Death 1 Receptor/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mitochondria/metabolism , Humans , Adipose Tissue/metabolism , Adipose Tissue/immunology , Obesity/immunology , Obesity/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Immunity, Innate , Male , Mitophagy/immunology , AMP-Activated Protein Kinase Kinases
2.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
3.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428643

ABSTRACT

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Subject(s)
Aurora Kinase A , Bile Duct Neoplasms , Cholangiocarcinoma , PTEN Phosphohydrolase , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Animals , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cholangiocarcinoma/etiology , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/etiology , Bile Duct Neoplasms/metabolism , Humans , Mice, Knockout , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Bile Ducts, Extrahepatic/pathology , Disease Models, Animal , Cholangitis/pathology , Cholangitis/etiology , Cholangitis/metabolism , Cholangitis/genetics , Signal Transduction
4.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G473-G481, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38410866

ABSTRACT

Genetically engineered mouse models play a pivotal role in the modeling of diseases, exploration of gene functions, and the development of novel therapies. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing technology has revolutionized the process of developing such models by enabling precise genome modifications of the multiple interested genes simultaneously. Following genome editing, an efficient genotyping methodology is crucial for subsequent characterization. However, current genotyping methods are laborious, time-consuming, and costly. Here, using targeting the mouse trypsinogen genes as an example, we introduced common applications of CRISPR-Cas9 editing and a streamlined cost-effective genotyping workflow for CRISPR-edited mouse models, in which Sanger sequencing is required only at the initial steps. In the F0 mice, we focused on identifying the presence of positive editing by PCR followed by Sanger sequencing without the need to know the exact sequences, simplifying the initial screening. In the F1 mice, Sanger sequencing and algorithms decoding were used to identify the precise editing. Once the edited sequence was established, a simple and effective genotyping strategy was established to distinguish homozygous and heterozygous status by PCR from tail DNA. The genotyping workflow applies to deletions as small as one nucleotide, multiple-gene knockout, and knockin studies. This simplified, efficient, and cost-effective genotyping shall be instructive to new investigators who are unfamiliar with characterizing CRISPR-Cas9-edited mouse strains.NEW & NOTEWORTHY This study presents a streamlined, cost-effective genotyping workflow for clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) edited mouse models, focusing on trypsinogen genes. It simplifies initial F0 mouse screening using PCR and Sanger sequencing without needing exact sequences. For F1 mice, precise editing is identified through Sanger sequencing and algorithm decoding. The workflow includes a novel PCR strategy for distinguishing homozygous and heterozygous statuses in subsequent generations, effective for small deletions, multiple-gene knockouts, and knockins.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , Gene Editing/methods , CRISPR-Associated Protein 9/genetics , Genotype , Trypsinogen , Workflow
5.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G495-G503, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38469630

ABSTRACT

Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.


Subject(s)
Liver Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Animals , Mice, Transgenic , Proto-Oncogene Proteins p21(ras)/genetics , Albumins/genetics , Recombinases/genetics , Recombination, Genetic , Liver Neoplasms/genetics , Integrases/genetics
6.
Article in English | MEDLINE | ID: mdl-39209184

ABSTRACT

BACKGROUND AND AIMS: The global burden of digestive diseases mortality has been increasing over the last 3 decades. However, little is known about disparities in digestive diseases-specific mortality in the United States. This study aimed to examine racial, ethnic, and state- and county-level disparities in digestive diseases mortality rate in the United States between 2000 and 2019. METHODS: We used the Institute of Health Metrics and Evaluation Global Health Data Exchange to gather digestive diseases age-standardized mortality rates for 5 racial and ethnic groups (White, Black, Latino, American Indian/Alaska Native [AI/AN], and Asian/Pacific Islander [API]) by sex, state, and county between 2000 and 2019. We used joinpoint regression analysis to evaluate the overall temporal trends by demography. RESULTS: The overall cause-specific mortality rate decreased from 36.0 to 34.5 deaths per 100,000 population across all groups (2000-2019). In 2019, AI/AN individuals had the highest mortality rate (86.2), followed by White (35.5), Latino and Black (both at 33.6), and API (15.6) individuals. Significant increases occurred across some of the racial and ethnic groups, with an increased average annual percentage change for 2000-2019 among AI/AN (0.87%; 95% confidence interval, 0.77%-0.97%) and White individuals (0.12%; 95% confidence interval, 0.02%-0.22%) particularly among females, while Latino, Black, and API individuals showed reduced average annual percentage change for 2000-2019. AI/AN constitutes the main race affected in the top 10 counties. Substantial state-level variation emerged, with the highest mortality rates in 2019 seen in West Virginia. CONCLUSIONS: Despite an overall decrease in digestive diseases mortality, significant disparities persist across racial and ethnic groups. AI/AN and White individuals experienced increased mortality rates, particularly among females. Targeted interventions and further research are needed to address these disparities and improve digestive health equity.

7.
Clin Gastroenterol Hepatol ; 22(9): 1830-1838.e9, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38703880

ABSTRACT

BACKGROUND & AIMS: Changes in body composition and metabolic factors may serve as biomarkers for the early detection of pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to capture the longitudinal changes in body composition and metabolic factors before diagnosis of PDAC. METHODS: We performed a retrospective cohort study in which all patients (≥18 years) diagnosed with PDAC from 2002 to 2021 were identified. We collected all abdominal computed tomography scans and 10 different blood-based biomarkers up to 36 months before diagnosis. We applied a fully automated abdominal segmentation algorithm previously developed by our group for 3-dimensional quantification of body composition on computed tomography scans. Longitudinal trends of body composition and blood-based biomarkers before PDAC diagnosis were estimated using linear mixed models, compared across different time windows, and visualized using spline regression. RESULTS: We included 1690 patients in body composition analysis, of whom 516 (30.5%) had ≥2 prediagnostic computed tomography scans. For analysis of longitudinal trends of blood-based biomarkers, 3332 individuals were included. As an early manifestation of PDAC, we observed a significant decrease in visceral and subcutaneous adipose tissue (ß = -1.94 [95% confidence interval (CI), -2.39 to -1.48] and ß = -2.59 [95% CI, -3.17 to -2.02]) in area (cm2)/height (m2) per 6 months closer to diagnosis, accompanied by a decrease in serum lipids (eg, low-density lipoprotein [ß = -2.83; 95% CI, -3.31 to -2.34], total cholesterol [ß = -2.69; 95% CI, -3.18 to -2.20], and triglycerides [ß = -1.86; 95% CI, -2.61 to -1.11]), and an increase in blood glucose levels. Loss of muscle tissue and bone volume was predominantly observed in the last 6 months before diagnosis. CONCLUSIONS: This study identified significant alterations in a variety of soft tissue and metabolic markers that occur in the development of PDAC. Early recognition of these metabolic changes may provide an opportunity for early detection.


Subject(s)
Body Composition , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tomography, X-Ray Computed , Humans , Male , Retrospective Studies , Carcinoma, Pancreatic Ductal/diagnosis , Female , Middle Aged , Pancreatic Neoplasms/diagnosis , Aged , Biomarkers, Tumor , Early Detection of Cancer/methods , Adult
8.
BMC Plant Biol ; 24(1): 931, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375603

ABSTRACT

BACKGROUND: Cold is an important environmental limiting factor affecting plant yield and quality. Capsicum (chili pepper), a tropical and subtropical vegetable crop, is extremely sensitive to cold. Although H2S is an important signaling regulator in the responses of plant growth and development to abiotic stress, few studies have examined its effects on cold-sensitive capsicum varieties. Through biotechnology methods to enhance the cold resistance of peppers, to provide some reference for pepper breeding, investigated molecular regulation by H2S of responses to cold stress in cold-sensitive capsicum plants, via physiological and transcriptomic analyses. RESULTS: In capsicum seedlings, exogenous H2S enhanced relative electrical conductivity (REC) and levels of malondialdehyde (MDA) under cold stress, maintained membrane integrity, increased the activity of enzymatic and non-enzymatic antioxidants, balanced reactive oxygen species levels (O2·- and H2O2), and improved photosynthesis, mitigating the damage caused by cold. In addition, 416 differentially expressed genes (DEGs) were involved in the response to cold stress after H2S treatment. These DEGs were mainly enriched in the ascorbate-glutathione and starch-sucrose metabolic pathways and plant hormone signal-transduction pathways. Exogenous H2S altered the expression of key enzyme-encoding genes such as GST, APX, and MDHAR in the ascorbate-glutathione metabolism pathway, as well as that of regulatory genes for stimulatory hormones (auxin, cytokinins, and gibberellins) and inhibitory hormones (including jasmonate and salicylic acid) in the plant hormone signal-transduction pathway, helping to maintain the energy supply and intracellular metabolic stability under cold stress. CONCLUSIONS: These findings reveal that exogenous H2S improves cold tolerance in cold-sensitive capsicum plants, elucidating the molecular mechanisms underlying its responses to cold stress. This study provides a theoretical basis for exploring and improving cold tolerance in capsicum plants.


Subject(s)
Antioxidants , Capsicum , Gene Expression Regulation, Plant , Glucose , Hydrogen Sulfide , Capsicum/genetics , Capsicum/physiology , Capsicum/metabolism , Antioxidants/metabolism , Hydrogen Sulfide/metabolism , Glucose/metabolism , Cold-Shock Response/genetics , Cold Temperature , Seedlings/genetics , Seedlings/metabolism , Seedlings/physiology , Seedlings/growth & development , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism
9.
New Phytol ; 243(6): 2332-2350, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39056291

ABSTRACT

Protein posttranslational modifications play crucial roles in plant immunity through modulating a complicated signaling network mediated by different hormones. We previously demonstrated that OsATL32, an ATL-type E3 ligase, negatively contributes to rice immunity against Magnaporthe oryzae. Here, we show that OsATL32 forms a loop with OsPPKL2 and OsGSK2 through distinct protein posttranslational modifications to modulate rice immunity. OsATL32 ubiquitinates OsPPKL2, a protein phosphatase with Kelch-like repeat domains that exerts positive roles in regulating rice immunity against M. oryzae and chitin-triggered immune responses, for degradation. The glycogen synthase kinase 2 (OsGSK2), which acts as a negative regulator of rice immunity against M. oryzae and chitin-triggered immune responses, phosphorylates OsATL32 to elevate its protein stability and E3 ligase activity on OsPPKL2. Moreover, OsPPKL2 directly dephosphorylates OsGSK2, affecting its kinase activity on substrates including OsATL32 for phosphorylation. Like OsGSK2 as a BR signaling repressor, OsATL32 negatively regulates BR signaling; conversely, OsPPKL2 plays a positive role in BR signaling. These findings provide a molecular mechanism in which OsATL32 serves as a node connecting BR signaling and immunity by associating with OsPPKL2 and OsGSK2, assembling into a distinct protein posttranslational modifications-linked loop that functions in rice BR signaling and immunity.


Subject(s)
Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Protein Processing, Post-Translational , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Phosphorylation , Ubiquitination , Signal Transduction , Magnaporthe/physiology , Brassinosteroids/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Gene Expression Regulation, Plant , Chitin/metabolism , Glycogen Synthase Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Ascomycota
10.
Diabetes Metab Res Rev ; 40(6): e3836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096246

ABSTRACT

Prolactin, a hormone that has been studied for almost a century, has evolved from a reproductive regulator to a key player in metabolic health. Initially identified for its lactogenic role, the impact of prolactin on glucose and lipid metabolism became evident in the 1970s, leading to a paradigm shift in our understanding. Deviations in prolactin levels, including hyperprolactinaemia and hypoprolactinaemia, have been associated with adverse effects on glucose and lipid metabolism. Mechanistically, prolactin regulates metabolic homoeostasis by maintaining islet abundance, regulating the hypothalamic energy regulatory centre, balancing adipose tissue expansion, and regulating hepatic metabolism. Given the widespread use of pharmaceutical agents that affect prolactin levels, it is important to examine prolactin-related metabolic effects. Recently, a profound exploration of the intricate metabolic role of prolactin has been conducted, encompassing its rhythm-dependent regulatory influence on metabolism and its correlation with cognitive impairment associated with metabolic diseases. In this review, we highlight the role of prolactin as a metabolic regulator, summarise its metabolic effects, and discuss topics related to the association between prolactin and metabolic comorbidities.


Subject(s)
Lipid Metabolism , Prolactin , Animals , Humans , Hyperprolactinemia/metabolism , Metabolic Diseases/metabolism , Prolactin/metabolism
11.
J Magn Reson Imaging ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488213

ABSTRACT

BACKGROUND: Cognitive impairment is increasingly recognized as an important comorbidity and complication of type 2 diabetes (T2D), affecting patients' quality of life and diabetes management. Dynamic brain activity indicators can reflect changes in key neural activity patterns of cognition and behavior. PURPOSE: To investigate dynamic functional connectivity (DFC) changes and spontaneous brain activity based on resting-state functional magnetic resonance imaging (rs-fMRI) in patients with T2D, exploring their correlations with clinical features. STUDY TYPE: Retrospective. SUBJECTS: Forty-five healthy controls (HCs) (22 males and 23 females) and 102 patients with T2D (57 males and 45 females). FIELD STRENGTH/SEQUENCE: 3.0 T/T1-weighted imaging and rs-fMRI with gradient-echo planar imaging sequence. ASSESSMENT: Functional networks were created using independent component analysis. DFC states were determined using sliding window approach and k-means clustering. Spontaneous brain activity was assessed using dynamic regional homogeneity (dReHo) variability. STATISTICAL TESTS: One-way analysis of variance and post hoc analysis were used to compare the essential information including demographics, clinical data, and features of DFC and dReHo among groups. Diagnostic performance was assessed using receiver operating characteristic (ROC) curve. P-values <0.05 were taken to indicate statistical significance. RESULTS: T2D group had significantly decreased mean dwell time and fractional windows in state 4 compared to HC. T2D with mild cognitive impairment showed significantly increased dReHo variability in left superior occipital gyrus compared to T2D with normal cognition. Mean dwell time and number of fractional windows of state 4 both showed significant positive correlations with the Montreal cognitive assessment scores (r = 0.309; r = 0.308, respectively) and the coefficient of variation of dReHo was significantly positively correlated with high-density lipoprotein cholesterol (r = 0.266). The integrated index had an area under the curve of 0.693 (95% confidence interval = 0.592-0.794). DATA CONCLUSION: Differences in DFC and dynamic characteristic of spontaneous brain activity associated with T2D-related functional impairment may serve as indicators for predicting symptom progression and assessing cognitive dysfunction. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

12.
J Natl Compr Canc Netw ; 22(3): 158-166, 2024 04.
Article in English | MEDLINE | ID: mdl-38626807

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PC) is a highly lethal malignancy with a survival rate of only 12%. Surveillance is recommended for high-risk individuals (HRIs), but it is not widely adopted. To address this unmet clinical need and drive early diagnosis research, we established the Pancreatic Cancer Early Detection (PRECEDE) Consortium. METHODS: PRECEDE is a multi-institutional international collaboration that has undertaken an observational prospective cohort study. Individuals (aged 18-90 years) are enrolled into 1 of 7 cohorts based on family history and pathogenic germline variant (PGV) status. From April 1, 2020, to November 21, 2022, a total of 3,402 participants were enrolled in 1 of 7 study cohorts, with 1,759 (51.7%) meeting criteria for the highest-risk cohort (Cohort 1). Cohort 1 HRIs underwent germline testing and pancreas imaging by MRI/MR-cholangiopancreatography or endoscopic ultrasound. RESULTS: A total of 1,400 participants in Cohort 1 (79.6%) had completed baseline imaging and were subclassified into 3 groups based on familial PC (FPC; n=670), a PGV and FPC (PGV+/FPC+; n=115), and a PGV with a pedigree that does not meet FPC criteria (PGV+/FPC-; n=615). One HRI was diagnosed with stage IIB PC on study entry, and 35.1% of HRIs harbored pancreatic cysts. Increasing age (odds ratio, 1.05; P<.001) and FPC group assignment (odds ratio, 1.57; P<.001; relative to PGV+/FPC-) were independent predictors of harboring a pancreatic cyst. CONCLUSIONS: PRECEDE provides infrastructure support to increase access to clinical surveillance for HRIs worldwide, while aiming to drive early PC detection advancements through longitudinal standardized clinical data, imaging, and biospecimen captures. Increased cyst prevalence in HRIs with FPC suggests that FPC may infer distinct biological processes. To enable the development of PC surveillance approaches better tailored to risk category, we recommend adoption of subclassification of HRIs into FPC, PGV+/FPC+, and PGV+/FPC- risk groups by surveillance protocols.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/epidemiology , Early Detection of Cancer/methods , Prospective Studies , Genetic Predisposition to Disease , Magnetic Resonance Imaging
13.
Diabetes Obes Metab ; 26(2): 650-662, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961040

ABSTRACT

AIMS: To investigate the neural static and dynamic intrinsic activity of intra-/inter-network topology among patients with type 2 diabetes (T2D) with non-alcoholic fatty liver disease (NAFLD) and those without NAFLD (T2NAFLD group and T2noNAFLD group, respectively) and to assess the relationship with metabolism. METHODS: Fifty-six patients with T2NAFLD, 78 with T2noNAFLD, and 55 healthy controls (HCs) were recruited to the study. Participants had normal cognition and underwent functional magnetic resonance imaging scans, clinical measurements, and global cognition evaluation. Independent component analysis was used to identify frequency spectrum parameters, static functional network connectivity, and temporal properties of dynamic functional network connectivity (P < 0.05, false discovery rate-corrected). Statistical analysis involved one-way analysis of covariance with post hoc, partial correlation and canonical correlation analyses. RESULTS: Our findings showed that: (i) T2NAFLD patients had more disordered glucose and lipid metabolism, had more severe insulin resistance, and were more obese than T2noNAFLD patients; (ii) T2D patients exhibited disrupted brain function, as evidenced by alterations in intra-/inter-network topology, even without clinically measurable cognitive impairment; (iii) T2NAFLD patients had more significant reductions in the frequency spectrum parameters of cognitive executive and visual networks than those with T2noNAFLD; and (iv) altered brain function in T2D patients was correlated with postprandial glucose, high-density lipoprotein cholesterol, and waist-hip ratio. CONCLUSION: This study may provide novel insights into neuroimaging correlates for underlying pathophysiological processes inducing brain damage in T2NAFLD. Thus, controlling blood glucose levels, lipid levels and abdominal obesity may reduce brain damage risk in such patients.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Diabetes Mellitus, Type 2/complications , Obesity/complications , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Glucose
14.
Diabetes Obes Metab ; 26(3): 840-850, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994378

ABSTRACT

AIMS: To characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction, and further investigate the associations between the most significant indicator and cognitive function, along with related cerebral alterations. MATERIALS AND METHODS: We performed a cross-sectional study in 449 subjects with type 2 diabetes who completed continuous glucose monitoring and cognitive assessments. Of these, 139 underwent functional magnetic resonance imaging to evaluate cerebral structure and olfactory neural circuit alterations. Relative weight and Sobol's sensitivity analyses were employed to characterize the comparative contributions of different glycaemic indicators to cognitive dysfunction. RESULTS: Complexity of glucose time series index (CGI) was found to have a more pronounced association with mild cognitive impairment (MCI) compared to glycated haemoglobin, time in range, and standard deviation. The proportion and multivariable-adjusted odds ratios (ORs) for MCI increased with descending CGI tertile (Tertile 1: reference group [≥4.0]; Tertile 2 [3.6-4.0] OR 1.23, 95% confidence interval [CI] 0.68-2.24; Tertile 3 [<3.6] OR 2.27, 95% CI 1.29-4.00). Decreased CGI was associated with cognitive decline in executive function and attention. Furthermore, individuals with decreased CGI displayed reduced olfactory activation in the left orbitofrontal cortex (OFC) and disrupted functional connectivity between the left OFC and right posterior cingulate gyrus. Mediation analysis demonstrated that the left OFC activation partially mediated the associations between CGI and executive function. CONCLUSION: Decreased glucose complexity closely relates to cognitive dysfunction and olfactory brain activation abnormalities in diabetes.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Adult , Humans , Glucose , Time Factors , Cross-Sectional Studies , Blood Glucose Self-Monitoring , Blood Glucose , Cognition , Cognitive Dysfunction/etiology , Magnetic Resonance Imaging/methods , Brain/pathology
15.
Diabetes Obes Metab ; 26(7): 2774-2786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38618970

ABSTRACT

AIM: This study assessed the efficacy and safety of co-administering retagliptin and henagliflozin versus individual agents at corresponding doses in patients with type 2 diabetes mellitus who were inadequately controlled with metformin. METHODS: This multicentre, phase 3 trial consisted of a 24-week, randomized, double-blind, active-controlled period. Patients with glycated haemoglobin (HbA1c) levels between 7.5% and 10.5% were randomized to receive once-daily retagliptin 100 mg (R100; n = 155), henagliflozin 5 mg (H5; n = 156), henagliflozin 10 mg (H10; n = 156), co-administered R100/H5 (n = 155), or R100/H10 (n = 156). The primary endpoint was the change in HbA1c from baseline to week 24. RESULTS: Based on the primary estimand, the least squares mean reductions in HbA1c at week 24 were significantly greater in the R100/H5 (-1.51%) and R100/H10 (-1.54%) groups compared with those receiving the corresponding doses of individual agents (-0.98% for R100, -0.86% for H5 and -0.95% for H10, respectively; p < .0001 for all pairwise comparisons). Achievement of HbA1c <7.0% at week 24 was observed in 27.1% of patients in the R100 group, 21.2% in the H5 group, 24.4% in the H10 group, 57.4% in the R100/H5 group and 56.4% in the R100/H10 group. Reductions in fasting plasma glucose and 2-h postprandial glucose were also more pronounced in the co-administration groups compared with the individual agents at corresponding doses. Decreases in body weight and systolic blood pressure were greater in the groups containing henagliflozin than in the R100 group. The incidence rates of adverse events were similar across all treatment groups, with no reported episodes of severe hypoglycaemia. CONCLUSIONS: For patients with type 2 diabetes mellitus inadequately controlled by metformin monotherapy, the co-administration of retagliptin and henagliflozin yielded more effective glycaemic control through 24 weeks compared with the individual agents at their corresponding doses.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Middle Aged , Female , Double-Blind Method , Metformin/administration & dosage , Metformin/therapeutic use , Glycated Hemoglobin/analysis , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Aged , Adult , Treatment Outcome
16.
Physiol Plant ; 176(4): e14456, 2024.
Article in English | MEDLINE | ID: mdl-39072778

ABSTRACT

Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.


Subject(s)
Arabidopsis , Botrytis , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Pseudomonas syringae , Arabidopsis/genetics , Arabidopsis/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Botrytis/physiology , Botrytis/pathogenicity , Pseudomonas syringae/physiology , Pseudomonas syringae/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Cucurbitaceae/microbiology , Cucurbitaceae/genetics , Phylogeny , Plants, Genetically Modified
17.
BMC Infect Dis ; 24(1): 571, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851671

ABSTRACT

OBJECTIVE: In this study, we examined the value of chest CT signs combined with peripheral blood eosinophil percentage in differentiating between pulmonary paragonimiasis and tuberculous pleurisy in children. METHODS: Patients with pulmonary paragonimiasis and tuberculous pleurisy were retrospectively enrolled from January 2019 to April 2023 at the Kunming Third People's Hospital and Lincang People's Hospital. There were 69 patients with pulmonary paragonimiasis (paragonimiasis group) and 89 patients with tuberculous pleurisy (tuberculosis group). Clinical symptoms, chest CT imaging findings, and laboratory test results were analyzed. Using binary logistic regression, an imaging model of CT signs and a combined model of CT signs and eosinophils were developed to calculate and compare the differential diagnostic performance of the two models. RESULTS: CT signs were used to establish the imaging model, and the receiver operating characteristic (ROC) curve was plotted. The area under the curve (AUC) was 0.856 (95% CI: 0.799-0.913), the sensitivity was 66.7%, and the specificity was 88.9%. The combined model was established using the CT signs and eosinophil percentage, and the ROC was plotted. The AUC curve was 0.950 (95% CI: 0.919-0.980), the sensitivity was 89.9%, and the specificity was 90.1%. The differential diagnostic efficiency of the combined model was higher than that of the imaging model, and the difference in AUC was statistically significant. CONCLUSION: The combined model has a higher differential diagnosis efficiency than the imaging model in the differentiation of pulmonary paragonimiasis and tuberculous pleurisy in children. The presence of a tunnel sign on chest CT, the absence of pulmonary nodules, and an elevated percentage of peripheral blood eosinophils are indicative of pulmonary paragonimiasis in children.


Subject(s)
Eosinophils , Paragonimiasis , Tomography, X-Ray Computed , Tuberculosis, Pleural , Humans , Paragonimiasis/diagnosis , Paragonimiasis/diagnostic imaging , Male , Female , Child , Retrospective Studies , Diagnosis, Differential , Tuberculosis, Pleural/diagnosis , Child, Preschool , Adolescent , ROC Curve , Sensitivity and Specificity
18.
BMC Endocr Disord ; 24(1): 76, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816692

ABSTRACT

OBJECTIVE: There has been some confusion in earlier research on the connection between thyroid function and polycystic ovary syndrome (PCOS). This research is aimed to probe into the correlation between thyroid condition and the risk of PCOS from a new standpoint of thyroid hormone sensitivity. METHODS: This research comprised 415 females with PCOS from Drum Tower Hospital Affiliated with the Medical School of Nanjing University, and 137 non-PCOS individuals were selected as the normal control. Based on free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH), we calculated the thyroid hormone sensitivity indices, which consist of Thyroid Feedback Quantile-based Index (TFQI), Thyroid-stimulating Hormone Index (TSHI), Thyrotroph Thyroxine Resistance Index (TT4RI) and Free Triiodothyronine /Free thyroxine (FT3/FT4). The binary logistic regression model was adopted to investigate the correlation between thyroid hormone sensitivity indices with the risk of PCOS. Pearson or Spearman correlation analysis was employed to explore the association among thyroid-related measures with metabolic parameters in PCOS. RESULTS: Results of this research showed that females with PCOS had rising TFQI, TSHI, TT4RI, and FT3/FT4 levels compared with the control group. After adjustment for the impact of various covariates, there was no significant correlation between FT3/FT4 and the risk of PCOS; However, the odds ratio of the third and fourth vs. the first quartile of TFQI were 3.57(95% confidence interval [CI]:1.08,11.87) and 4.90(95% CI:1.38,17.38) respectively; The odds ratio of the fourth vs. the first quartile of TSHI was 5.35(95% CI:1.48,19.37); The odds ratio of the second vs. the first quartile of TT4RI was 0.27(95%CI 0.09,0.82). In addition, no significant correlation was observed between thyroid-related measures and metabolic measures in females with PCOS. CONCLUSIONS: A reduction in the sensitivity of central thyroid hormone is closely correlated with a higher risk of PCOS. Further research is necessary to corroborate our findings and the supporting mechanisms.


Subject(s)
Polycystic Ovary Syndrome , Thyroid Hormones , Humans , Polycystic Ovary Syndrome/blood , Female , Adult , Thyroid Hormones/blood , Case-Control Studies , Thyroid Function Tests , Risk Factors , Young Adult , Thyrotropin/blood , Triiodothyronine/blood , Thyroxine/blood , Biomarkers/blood , Prognosis
19.
Dig Dis Sci ; 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39438414

ABSTRACT

BACKGROUND/OBJECTIVES: The clinical utility of body composition in the development of complications of acute pancreatitis (AP) remains unclear. We aimed to describe the associations between body composition and the recurrence of AP. METHODS: We performed a retrospective study of patients hospitalized with AP at three tertiary care centers. Patients with computer tomography (CT) imaging of the abdomen at admission were included. A previously validated and fully automated abdominal segmentation algorithm was used for body composition analysis. Hospitalization for a recurrent episode of AP was the primary endpoint. Secondary endpoints included the development of chronic pancreatitis (CP) or diabetes mellitus (DM) in patients who were evaluated. Cox Proportional Hazards regression was used. RESULTS: From a total of 347 patients, 89 (25.6%) were hospitalized for recurrent AP (median time: 219 days). Thirty-four of 112 patients (30.4%) developed CP (median time: 311 days) and 22 of 88 (25.0%) developed DM (median time: 1104 days). After adjusting for age, male sex, first episode of AP, BUN, and severity of AP, we found that obesity, body mass index, alcohol pancreatitis, and gallstone pancreatitis were significantly associated with a recurrent episode of AP. Body composition was not associated with recurrent AP. In unadjusted analysis, subcutaneous adipose tissue (SAT) (HR 0.87 per 10 cm2, p = 0.002) was associated with CP. Skeletal muscle (SM) mass approached significance for CP (p = 0.0546). Intermuscular adipose tissue (IMAT) (HR 1.45 per 5 cm2, p = 0.0264) was associated with DM. CONCLUSION: Body composition was not associated with having a recurrent AP. At follow-up, 30% and 25% of evaluated patients developed CP and DM, respectively. A higher SAT and IMAT were associated with a lower incidence of CP and higher incidence of DM, respectively.

20.
BMC Ophthalmol ; 24(1): 231, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822280

ABSTRACT

BACKGROUND: The main purpose of this paper is to introduce a method that can accurately locate the posterior capsule of the lens to facilitate a relatively complete resection of the anterior vitreous body. METHODS: A total of 51 patients in the experimental group and control group were enrolled in this study. Phacoemulsification combined with vitrectomy was performed in all cases. After the cataract procedure was completed in the control group, the surgeon performed a conventional anterior vitrectomy with the operative eye. In the experimental group, anterior vitrectomy was performed according to the threadiness corrugation of the posterior capsule of the lens. During the operation, with the help of triamcinolone, two surgeons confirmed the resection of the anterior vitreous cortex; the best corrected visual acuity and intraocular pressure of all patients were recorded at 1 week, 1 month and 3 months after surgery. RESULTS: Fifty patients underwent phacoemulsification combined with vitrectomy, except one patient in the experimental group who was lost to follow-up. After surgery, no significant complications were observed in all patients except two patients in the control group with temporary increases in intraocular pressure. There was no significant difference in preoperative visual acuity between the two groups (t = 0.83, P = 0.25). Both groups had varying degrees of improvement in best corrected visual acuity at 1 week, 1 month and 3 months after surgery. Moreover, there was no significant difference in BCVA between the two groups at the three follow-up time points (t=-1.15, -1.65, -1.09, P = 0.53, 0.21, 0.23). After surgery, no significant complications were observed in all patients except two patients in the control group with temporary increases in intraocular pressure. Incomplete resection of the anterior vitreous cortex was observed in 2 patients in each group, but there was no significant difference (χ2 = 7.81, P > 0.05). CONCLUSION: In the process of cataract surgery combined with vitrectomy, thready corrugation appears in the posterior capsule of the lens and is an important sign of its localization. Anterior vitrectomy can be accomplished safely and effectively with the help of thread-like corrugation, and the surgical effect is almost the same as that of traditional surgery. Especially suitable for beginners in vitreous surgery.


Subject(s)
Intraocular Pressure , Phacoemulsification , Visual Acuity , Vitrectomy , Vitreous Body , Humans , Vitrectomy/methods , Phacoemulsification/methods , Female , Male , Aged , Middle Aged , Vitreous Body/surgery , Intraocular Pressure/physiology , Posterior Capsule of the Lens/surgery , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL