Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Appl Clin Med Phys ; 24(1): e13828, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36347052

ABSTRACT

PURPOSE: Quantitative measurements of activity in SPECT are important for radioisotope therapy planning and disease diagnosis. The aim of this manuscript is to develop a robust method to quantify the total activity in a volume-of-interest (VOI) of different quantitative SPECT reconstructions and validate the estimation accuracy. METHODS: We customized an IEC body phantom using 3D printing technology and made six sphere inserts of 1-6 cm in diameter with at least 3 cm separation. The activity concentration within the spheres was in the range of patient lesion/organ activity. The background activity was then increased from zero to a sphere/background activity concentration of 8:1, 4:1, and 2:1. SPECT data were acquired with Philips Brightview and GE Discovery 670 SPECT/computed tomography (CT) systems under clinical acquisition protocols. Quantitative SPECT images were reconstructed with Hermes SUV-SPECT (both Philips and GE data) and GE Q.Metrix (GE data only). The quantitative SPECT reconstructions are iterative with scatter, CT attenuation correction, and resolution recovery. We quantified the total activity by expanding the sphere VOI to include a spill-out region. Background correction was applied by sampling a region outside the spill-out region. The true fractions (TFs) (total activity/true activity) were measured for all six spheres for all SPECT acquisitions. RESULTS: The TF is close to 100% for 2-6 cm spheres for zero background, 8:1 and 4:1 sphere/background activity ratios. The TF was found to be unreliable for the 1-cm sphere because of the limit of phantom design. TF accuracy for 2:1 sphere/background ratio was degraded due to significantly large background, inadequate scatter correction and detector count loss. CONCLUSIONS: The results demonstrated that the proposed quantification method is accurate for objects of different sizes in currently clinical quantitative reconstruction and has the potential for improving the accuracy for therapeutic treatment planning or radiation dosimetry calculations.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Humans , Tomography Scanners, X-Ray Computed , Phantoms, Imaging , Printing, Three-Dimensional
2.
Tsinghua Sci Technol ; 15(1): 79-86, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20589233

ABSTRACT

We investigate the feasibility of dual-energy method for image contrast enhancement in small animal studies using a low kV X-ray radiographic system. A robust method for X-ray spectrum estimation from transmission measurements, based on expectation-maximization (EM) method, is applied to an X-ray specimen radiographic system for dual energy imaging of a mouse. From transmission measurements of two known attenuators at two different X-ray tube voltages, the X-ray energy spectra are reconstructed using the EM-based method. From the spectra information thus obtained, the transmission data for bone and soft tissue in terms of various thicknesses are generated. Two polynomial functions of transmission data are then sought for to fit the inverted thicknesses of bone and soft-tissue. Scatters in cone-beam projection data acquired at two X-ray energies were corrected. From the scatter-corrected data, a bone thickness map is separated from a soft-tissue thickness map by use of the polynomial functions.

3.
Tsinghua Sci Technol ; 15(1): 68-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20617122

ABSTRACT

The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement.

4.
Tsinghua Sci Technol ; 15(1): 74-78, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20582237

ABSTRACT

There has been a renewed interest in algorithm development for image reconstruction from highly incomplete data in computed tomography (CT). Such algorithms may lead to reduced imaging dose and time, and to the design of innovative configurations tailored to specific imaging tasks. In recent years, a carbon-nanotube (CNT)-based field-emission x-ray source has been developed, which offers easy electronic control of radiation and thus can be an ideal candidate for gated imaging. We have recently proposed algorithms for image reconstruction from fan- and cone-beam data collected at highly sparse angular views through minimization of the total-variation (TV) of the image subject to the condition that the estimated data are consistent with the measured data. In this work, we investigate and demonstrate the application of the TV-minimization algorithm to reconstructing images from mouse data acquired with a CNT-based CT scanner at a number of views much lower than what is used in conventional CT imaging. The results demonstrate that the TV-minimization algorithm can yield images with quality comparable to those obtained from a large number of views by use of the conventional algorithms. The significance of the work may lie in that the substantial reduction of projection views promised by the TV-minimization algorithm can be exploited for reducing imaging dose and time or for improving temporal resolution in tasks such as dynamic imaging.

5.
Med Phys ; 34(12): 4923-33, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18196817

ABSTRACT

Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolution entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.


Subject(s)
Image Enhancement/instrumentation , Spiral Cone-Beam Computed Tomography , Algorithms , Animals , Extremities/pathology , Fibrosarcoma/diagnostic imaging , Humans , Mice , Osteosarcoma/diagnostic imaging , Phantoms, Imaging , Polymethyl Methacrylate
6.
Phys Med Biol ; 52(18): 5497-508, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17804878

ABSTRACT

In the last few years, mathematically exact algorithms, including the backprojection-filtration (BPF) algorithm, have been developed for accurate image reconstruction in helical cone-beam CT. The BPF algorithm requires minimum data, and can reconstruct region-of-interest (ROI) images from data containing truncations. However, similar to other existing reconstruction algorithms for helical cone-beam CT, the BPF algorithm involves a backprojection with a spatially varying weighting factor, which is computationally demanding and, more importantly, can lead to undesirable numerical properties in reconstructed images. In this work, we develop a rebinned BPF algorithm in which the backprojection invokes no spatially varying weighting factor for accurate image reconstruction from helical cone-beam projections. This rebinned BPF algorithm is computationally more efficient and numerically more stable than the original BPF algorithm, while it also retains the nice properties of the original BPF algorithm such as minimum data requirement and ROI-image reconstruction from truncated data. We have also performed simulation studies to validate and evaluate the rebinned BPF algorithm.


Subject(s)
Algorithms , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, Spiral Computed/methods , Filtration/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Tomography, Spiral Computed/instrumentation
7.
IEEE Trans Med Imaging ; 25(8): 1022-36, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16894995

ABSTRACT

We formulate computed tomography (CT) sinogram preprocessing as a statistical restoration problem in which the goal is to obtain the best estimate of the line integrals needed for reconstruction from the set of noisy, degraded measurements. CT measurement data are degraded by a number of factors-including beam hardening and off-focal radiation-that produce artifacts in reconstructed images unless properly corrected. Currently, such effects are addressed by a sequence of sinogram-preprocessing steps, including deconvolution corrections for off-focal radiation, that have the potential to amplify noise. Noise itself is generally mitigated through apodization of the reconstruction kernel, which effectively ignores the measurement statistics, although in high-noise situations adaptive filtering methods that loosely model data statistics are sometimes applied. As an alternative, we present a general imaging model relating the degraded measurements to the sinogram of ideal line integrals and propose to estimate these line integrals by iteratively optimizing a statistically based objective function. We consider three different strategies for estimating the set of ideal line integrals, one based on direct estimation of ideal "monochromatic" line integrals that have been corrected for single-material beam hardening, one based on estimation of ideal "polychromatic" line integrals that can be readily mapped to monochromatic line integrals, and one based on estimation of ideal transmitted intensities, from which ideal, monochromatic line integrals can be readily estimated. The first two approaches involve maximization of a penalized Poisson-likelihood objective function while the third involves minimization of a quadratic penalized weighted least squares (PWLS) objective applied in the transmitted intensity domain. We find that at low exposure levels typical of those being considered for screening CT, the Poisson-likelihood based approaches outperform the PWLS objective as well as a standard approach based on adaptive filtering followed by deconvolution. At higher exposure levels, the approaches all perform similarly.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Likelihood Functions , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
8.
Phys Med Biol ; 61(9): 3317-46, 2016 May 07.
Article in English | MEDLINE | ID: mdl-27032676

ABSTRACT

It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Image Processing, Computer-Assisted/standards , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy, Image-Guided/methods , Humans
9.
IEEE Trans Med Imaging ; 34(3): 740-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25252276

ABSTRACT

Our goal is to validate a spectral computed tomography (CT) system design that uses a conventional X-ray source with multiple balanced K-edge filters. By performing a simultaneously synthetic reconstruction in multiple energy bins, we obtained a good agreement between measurements and model expectations for a reasonably complex phantom. We performed simulation and data acquisition on a phantom containing multiple rods of different materials using a NeuroLogica CT scanner. Five balanced K-edge filters including Molybdenum, Cerium, Dysprosium, Erbium, and Tungsten were used separately proximal to the X-ray tube. For each sinogram bin, measured filtered vector can be defined as a product of a transmission matrix, which is determined by the filters and is independent of the imaging object, and energy-binned intensity vector. The energy-binned sinograms were then obtained by inverting the transmission matrix followed by a multiplication of the filter measurement vector. For each energy bin defined by two consecutive K-edges, a synthesized energy-binned attenuation image was obtained using filtered back-projection reconstruction. The reconstructed attenuation coefficients for each rod obtained from the experiment was in good agreement with the corresponding simulated results. Furthermore, the reconstructed attenuation coefficients for a given energy bin, agreed with National Institute of Standards and Technology reference values when beam hardening within the energy bin is small. The proposed cost-effective system design using multiple balanced K-edge filters can be used to perform spectral CT imaging at clinically relevant flux rates using conventional detectors and integrating electronics.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/instrumentation , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Computer Simulation , Filtration , Humans , Phantoms, Imaging , Spectrometry, X-Ray Emission , Tomography, X-Ray Computed/standards
10.
Phys Med Biol ; 60(12): 4601-33, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-26020490

ABSTRACT

Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Head/diagnostic imaging , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiographic Image Interpretation, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Humans , Male , Quality Assurance, Health Care , Retrospective Studies
11.
Phys Med Biol ; 59(11): 2659-85, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24786683

ABSTRACT

There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.


Subject(s)
Image Processing, Computer-Assisted/methods , Mammography/methods , Radiation Dosage , Algorithms , Humans , Imaging, Three-Dimensional , Signal-To-Noise Ratio
12.
Phys Med Biol ; 58(2): 205-30, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23257068

ABSTRACT

The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in a single-photon emission computed tomography (SPECT)/CBCT system can be increased by offsetting the CBCT detector. Analytic-based algorithms have been developed for image reconstruction from data collected at a large number of densely sampled views in offset-detector CBCT. However, the radiation dose involved in a large number of projections can be of a health concern to the imaged subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate and characterize in the work optimization-based algorithms, including an adaptive steepest descent-weighted projection onto convex sets (ASD-WPOCS) algorithms, for image reconstruction from sparse-view data collected in offset-detector CBCT. Using simulated data and real data collected from a physical pelvis phantom and patient, we verify and characterize properties of the algorithms under study. Results of our study suggest that optimization-based algorithms such as ASD-WPOCS may be developed for yielding images of potential utility from a number of projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus leading to a dose reduction in CBCT imaging.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Humans , Pelvis/diagnostic imaging , Phantoms, Imaging
13.
Phys Med Biol ; 57(16): 5245-73, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22850194

ABSTRACT

In this work, we investigate optimization-based image reconstruction from few-view (i.e. less than ten views) projections of sparse objects such as coronary-artery specimens. Using optimization programs as a guide, we formulate constraint programs as reconstruction programs and develop algorithms to reconstruct images through solving the reconstruction programs. Characterization studies are carried out for elucidating the algorithm properties of 'convergence' (relative to designed solutions) and 'utility' (relative to desired solutions) by using simulated few-view data calculated from a discrete FORBILD coronary-artery phantom, and real few-view data acquired from a human coronary-artery specimen. Study results suggest that carefully designed reconstruction programs and algorithms can yield accurate reconstructions of sparse images from few-view projections.


Subject(s)
Coronary Vessels/diagnostic imaging , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Phantoms, Imaging
14.
IEEE Trans Med Imaging ; 30(3): 606-20, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20977983

ABSTRACT

Micro-computed tomography (micro-CT) is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300-1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm, we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield images with quality comparable to that obtained with existing algorithms, while using one-sixth to one quarter of the 361-view data currently used in typical micro-CT specimen imaging.


Subject(s)
Algorithms , Radiation Protection/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Animals , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Swine
15.
Phys Med Biol ; 55(22): 6575-99, 2010 Nov 21.
Article in English | MEDLINE | ID: mdl-20962368

ABSTRACT

Flat-panel-detector x-ray cone-beam computed tomography (CBCT) is used in a rapidly increasing host of imaging applications, including image-guided surgery and radiotherapy. The purpose of the work is to investigate and evaluate image reconstruction from data collected at projection views significantly fewer than what is used in current CBCT imaging. Specifically, we carried out imaging experiments using a bench-top CBCT system that was designed to mimic imaging conditions in image-guided surgery and radiotherapy; we applied an image reconstruction algorithm based on constrained total-variation (TV)-minimization to data acquired with sparsely sampled view-angles and conducted extensive evaluation of algorithm performance. Results of the evaluation studies demonstrate that, depending upon scanning conditions and imaging tasks, algorithms based on constrained TV-minimization can reconstruct images of potential utility from a small fraction of the data used in typical, current CBCT applications. A practical implication of the study is that the optimization of algorithm design and implementation can be exploited for considerably reducing imaging effort and radiation dose in CBCT.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Cone-Beam Computed Tomography/instrumentation , Head/diagnostic imaging , Humans , Phantoms, Imaging
16.
Int J Biomed Imaging ; 2006: 41380, 2006.
Article in English | MEDLINE | ID: mdl-23165029

ABSTRACT

We have compared the performance of two different penalty choices for a penalized-likelihood sinogram-restoration strategy we have been developing. One is a quadratic penalty we have employed previously and the other is a new median-based penalty. We compared the approaches to a noniterative adaptive filter that loosely but not explicitly models data statistics. We found that the two approaches produced similar resolution-variance tradeoffs to each other and that they outperformed the adaptive filter in the low-dose regime, which suggests that the particular choice of penalty in our approach may be less important than the fact that we are explicitly modeling data statistics at all. Since the quadratic penalty allows for derivation of an algorithm that is guaranteed to monotonically increase the penalized-likelihood objective function, we find it to be preferable to the median-based penalty.

SELECTION OF CITATIONS
SEARCH DETAIL