Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Chem Biol ; 20(7): 835-846, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38287154

ABSTRACT

Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Ferroptosis/drug effects , Animals , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Platelet Activating Factor/metabolism , Mice, Knockout , Humans , Male
2.
J Am Chem Soc ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728652

ABSTRACT

Porous organic polymers (POPs) with inherent porosity, tunable pore environment, and semiconductive property are ideally suitable for application in various advanced semiconductor-related devices. However, owing to the lack of processability, POPs are usually prepared in powder forms, which limits their application in advanced devices. Herein, we demonstrate an example of information storage application of POPs with film form prepared by an electrochemical method. The growth process of the electropolymerized films in accordance with the Volmer-Weber model was proposed by observation of atomic force microscopy. Given the mechanism of the electron transfer system, we verified and mainly emphasized the importance of porosity and interfacial properties of porous polymer films for memristor. As expected, the as-fabricated memristors exhibit good performance on low turn-on voltage (0.65 ± 0.10 V), reliable data storage, and high on/off current ratio (104). This work offers inspiration for applying POPs in the form of electropolymerized films in various advanced semiconductor-related devices.

3.
Nat Chem Biol ; 18(3): 313-320, 2022 03.
Article in English | MEDLINE | ID: mdl-34916620

ABSTRACT

Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on the ER, E-Syts bind the PM via an array of C2 domains in a Ca2+- and lipid-dependent manner, drawing the two membranes close to facilitate lipid exchange. How these C2 domains bind the PM and regulate the ER-PM distance is not well understood. Here, we applied optical tweezers to dissect PM binding by E-Syt1 and E-Syt2. We detected Ca2+- and lipid-dependent membrane-binding kinetics of both E-Syts and determined the binding energies and rates of individual C2 domains or pairs. We incorporated these parameters in a theoretical model to recapitulate salient features of E-Syt-mediated membrane contacts observed in vivo, including their equilibrium distances and probabilities. Our methods can be applied to study other proteins containing multiple membrane-binding domains linked by disordered polypeptides.


Subject(s)
Calcium , Optical Tweezers , Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Lipids/analysis
4.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38284653

ABSTRACT

The optical surface of extreme ultraviolet (EUV) lithography machines is highly vulnerable to contamination by hydrocarbons, resulting in the formation of carbon deposits that significantly degrade the quality and efficiency of lithography. The dynamic gas lock (DGL) has been proven as an effective approach to alleviate carbon deposition. However, the majority of existing studies on carbon deposition neglect the influence of the DGL. This paper is dedicated to investigating the phenomena of hydrocarbon adsorption, desorption, and cleavage with considering the effects of the DGL. A comprehensive mathematical model of the carbon deposition process is established, and the impact of radiation intensity, temperature, and hydrocarbon types on the depositing rate is considered. The results suggest that the primary cause of carbon deposition is the direct cracking of hydrocarbons induced by photons with a wavelength range between 12.5 and 14.5 nm. Additionally, it has been observed that the carbon deposition rate decreases exponentially as clean gas flow increases when EUV radiation intensity exceeds 50 mW/mm2. Conversely, at low EUV radiation intensity, clean gas flow has little effect on the carbon deposition rate. An effective approach to mitigate carbon deposition is to elevate the temperature of the optical surface and employ light hydrocarbon materials in the EUV process.

5.
Sensors (Basel) ; 24(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257417

ABSTRACT

In the process of data transmission in mobile ad hoc networks, it is essential to establish optimal routes from source nodes to destination nodes. However, as network density increases, this process is often accompanied by a significant rise in network overhead. To address this issue, the ND-AODV (neighborhood density AODV) protocol has been introduced, which reduces the probability of transmitting control information in high-density node environments to mitigate network overhead. Nevertheless, this may come at the cost of reduced routing accuracy, potentially leading to unnecessary resource wastage in certain scenarios. Furthermore, ND-AODV does not comprehensively consider the location of the receiving nodes, which limits its ability to reduce network overhead effectively. To overcome these limitations, this paper introduces a novel routing approach, known as CND-AODV (common neighborhood density AODV). In comparison to ND-AODV, CND-AODV offers a more comprehensive solution to the challenges posed by high-density network environments. It intelligently processes control information based on the special positioning of the receiving nodes, thereby significantly reducing unnecessary network overhead. Through simulation experiments comparing performance metrics such as throughput, packet delivery rate, and latency, the results clearly indicate that CND-AODV substantially decreases network overhead, enhancing network performance. Compared to ND-AODV, this innovative routing approach exhibits significant advantages. It provides a more efficient and reliable solution for ad hoc networks in high-density environments.

6.
Sensors (Basel) ; 24(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38610322

ABSTRACT

This paper introduces an innovative non-contact heart rate monitoring method based on Wi-Fi Channel State Information (CSI). This approach integrates both amplitude and phase information of the CSI signal through rotational projection, aiming to optimize the accuracy of heart rate estimation in home environments. We develop a frequency domain subcarrier selection algorithm based on Heartbeat to subcomponent ratio (HSR) and design a complete set of signal filtering and subcarrier selection processes to further enhance the accuracy of heart rate estimation. Heart rate estimation is conducted by combining the peak frequencies of multiple subcarriers. Extensive experimental validations demonstrate that our method exhibits exceptional performance under various environmental conditions. The experimental results show that our subcarrier selection method for heart rate estimation achieves an average accuracy of 96.8%, with a median error of only 0.8 bpm, representing an approximately 20% performance improvement over existing technologies.

7.
J Sci Food Agric ; 104(4): 2484-2492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37972116

ABSTRACT

BACKGROUND: It is well known that hemp proteins have the disadvantages of poor solubility and poor emulsification. To improve these shortcomings, an alkali covalent cross-linking method was used to prepare hemp protein isolate-epigallocatechin-3-gallate biopolymer (HPI-EGCG) and the effects of different heat treatment conditions on the structure and emulsifying properties of the HPI-EGCG covalent complex were studied. RESULTS: The secondary and tertiary structures, solubility, and emulsification ability of the HPI-EGCG complexes were evaluated using particle size, zeta potential, circular dichroism (CD), and fluorescence spectroscopy indices. The results showed that the absolute value of zeta potential of HPI-EGCG covalent complex was the largest, 18.6 mV, and the maximum binding amount of HPI to EGCG was 29.18 µmol g-1 . Under heat treatment at 25-35 °C, the α-helix content was reduced from 1.87% to 0%, and the ß-helix content was reduced from 82.79% to 0% after the covalent binding of HPI and EGCG. The solubility and emulsification properties of the HPI-EGCG covalent complexes were improved significantly, and the emulsification activity index (EAI) and emulsion stability index (ESI) were increased by 2.77-fold and 1.21-fold, respectively. CONCLUSION: A new HPI-EGCG covalent complex was developed in this study to provide a theoretical basis for the application of HPI-EGCG in food industry. © 2023 Society of Chemical Industry.


Subject(s)
Cannabis , Catechin , Catechin/analogs & derivatives , Cannabis/chemistry , Heating , Antioxidants/chemistry , Catechin/chemistry , Biopolymers
8.
J Sci Food Agric ; 104(11): 6778-6786, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38567792

ABSTRACT

BACKGROUND: This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS: The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and ß-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the ß-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS: This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.


Subject(s)
Globulins , Glycine max , Protein Denaturation , Soybean Proteins , Hydrogen-Ion Concentration , Globulins/chemistry , Glycine max/chemistry , Soybean Proteins/chemistry , Solubility , Protein Structure, Secondary
9.
J Neuroradiol ; 51(1): 74-81, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37442272

ABSTRACT

PURPOSE: Traditional flow diverters (FDs) for treating aneurysms at the fetal posterior communicating artery are unsatisfactory. Surpass Streamline is a novel FD with different mesh characteristics; however, the outcomes for such aneurysms remain unclear. This study aimed to compare hemodynamic alterations induced by Surpass Streamline, Pipeline Flex, and Tubridge devices and explore possible strategies for aneurysms at the fetal posterior communicating artery. METHODS: Two simulated aneurysms (Case 1, Case 2) were constructed from digital subtraction angiography (DSA). The three FDs were virtually deployed, and hemodynamic analysis based on computational fluid dynamics was performed. Hemodynamic parameters, including the sac-averaged velocity magnitude (Velocity), high-flow volume (HFV), and wall shear stress (WSS), were compared between each FD and the untreated model (control). Surpass Streamline was performed in real life for two aneurysms and the clinical outcomes were collected for analysis. RESULTS: Compared to the control, the Surpass resulted in the most significant reduction in flow. In Case 1, the Velocity, HFV, and WSS were reduced by 51.6%, 78.1%, and 64.3%, respectively. In Case 2, the Velocity, HFV, and WSS were reduced by 48.0%, 81.1%, and 65.3%, respectively. Tubridge showed slightly larger changes in hemodynamic parameters than Pipeline. In addition, our analysis suggested that metal coverage was correlated with the WSS, Velocity, and HFV. The postoperative DSA showed that the aneurysm was nearly occluded in Case 1 and decreased in Case 2. CONCLUSION: Compared to that with the Pipeline and Tubridge, the Surpass resulted in the greatest reduction in hemodynamic parameters and might be effective for aneurysms at the fetal posterior communicating artery. Virtual FD deployment and computational fluid dynamics analysis may be used to predict the treatment outcomes.


Subject(s)
Intracranial Aneurysm , Humans , Intracranial Aneurysm/therapy , Intracranial Aneurysm/surgery , Hemodynamics , Treatment Outcome , Hydrodynamics , Arteries
10.
Proc Natl Acad Sci U S A ; 117(29): 17381-17388, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32632018

ABSTRACT

Adiponectin (Acrp30) is an adipokine associated with protection from cardiovascular disease, insulin resistance, and inflammation. Although its effects are conventionally attributed to binding Adipor1/2 and T-cadherin, its abundance in circulation, role in ceramide metabolism, and homology to C1q suggest an overlooked role as a lipid-binding protein, possibly generalizable to other C1q/TNF-related proteins (CTRPs) and C1q family members. To investigate this, adiponectin, representative family members, and variants were expressed in Expi293 cells and tested for binding to lipids in liposomes using density centrifugation. Binding to physiological lipids were also analyzed using gradient ultracentrifugation, liquid chromatography-mass spectrometry, and shotgun lipidomics. Interestingly, adiponectin selectively bound several anionic phospholipids and sphingolipids, including phosphatidylserine, ceramide-1-phosphate, glucosylceramide, and sulfatide, via the C1q domain in an oligomerization-dependent fashion. Binding to lipids was observed in liposomes, low-density lipoproteins, cell membranes, and plasma. Other CTRPs and C1q family members (Cbln1, CTRP1, CTRP5, and CTRP13) also bound similar lipids. These findings suggest that adiponectin and CTRPs function not only as hormones, but also as lipid opsonins, as may other C1q family proteins.


Subject(s)
Adiponectin/metabolism , Complement C1q/metabolism , Phospholipids/metabolism , Sphingolipids/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adipokines/metabolism , Adiponectin/genetics , Animals , Anions , Cell Membrane , Cholesterol, LDL , Humans , Lipid Metabolism , Lipidomics , Lipoproteins/metabolism , Liposomes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Opsonin Proteins/metabolism , Plasma
11.
Sensors (Basel) ; 23(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36991813

ABSTRACT

Although Orthogonal Frequency Division Multiplexing (OFDM) technology is still the key transmission waveform technology in 5G, traditional channel estimation algorithms are no longer sufficient for the high-speed multipath time-varying channels faced by both existing 5G and future 6G. In addition, the existing Deep Learning (DL) based OFDM channel estimators are only applicable to Signal-to-Noise Ratios (SNRs) in a small range, and the estimation performance of the existing algorithms is greatly limited when the channel model or the mobile speed at the receiver does not match. To solve this problem, this paper proposes a novel network model NDR-Net that can be used for channel estimation under unknown noise levels. NDR-Net consists of a Noise Level Estimate subnet (NLE), a Denoising Convolutional Neural Network subnet (DnCNN), and a Residual Learning cascade. Firstly, a rough channel estimation matrix value is obtained using the conventional channel estimation algorithm. Then it is modeled as an image and input to the NLE subnet for noise level estimation to obtain the noise interval. Then it is input to the DnCNN subnet together with the initial noisy channel image for noise reduction to obtain the pure noisy image. Finally, the residual learning is added to obtain the noiseless channel image. The simulation results show that NDR-Net can obtain better estimation results than traditional channel estimation, and it can be well adapted when the SNR, channel model, and movement speed do not match, which indicates its superior engineering practicability.

12.
J Sci Food Agric ; 103(13): 6566-6573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37229570

ABSTRACT

BACKGROUND: This study used enzymatic and Ca2+ cross-linking methods to prepare edible soy protein isolate (SPI) and sodium alginate (SA) interpenetrating polymer network hydrogels to overcome the disadvantages of traditional interpenetrating polymer network (IPN) hydrogels, such as poor performance, high toxicity, and inedibility. The influence of changes in SPI and SA mass ratio on the performance of SPI-SA IPN hydrogels was investigated. RESULTS: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure of the hydrogels. Texture profile analysis (TPA), rheological properties, swelling rate, and Cell Counting Kit-8 (CCK-8) were used to evaluate physical and chemical properties and safety. The results showed that, compared with SPI hydrogel, IPN hydrogels had better gel properties and structural stability. As the mass ratio of SPI-SA IPN changed from 1:0.2 to 1:1, the gel network structure of hydrogels also tended to be dense and uniform. The water retention and mechanical properties of these hydrogels, such as storage modulus (G'), loss modulus (G"), and gel hardness increased significantly and were greater than those of the SPI hydrogel. Cytotoxicity tests were also performed. The biocompatibility of these hydrogels was good. CONCLUSIONS: This study proposes a new method to prepare food-grade IPN hydrogels with mechanical properties of SPI and SA, which may have strong potential for the development of new foods. © 2023 Society of Chemical Industry.


Subject(s)
Alginates , Hydrogels , Hydrogels/chemistry , Alginates/chemistry , Polymers/chemistry , Soybean Proteins , Spectroscopy, Fourier Transform Infrared
13.
J Sci Food Agric ; 103(1): 118-124, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-35811466

ABSTRACT

BACKGROUND: Quinoa is a good gluten-free resource for food processing, especially bread making, and can improve and prevent the development of complications associated with celiac disease (CD). However, lack of gluten affects quinoa bread quality. Previous research showed that soy protein isolate (SPI) could improve gluten-free bread quality to some extent. Therefore, this study investigated the effects of SPI on the physical properties of quinoa dough and gluten-free bread quality characteristics. RESULTS: Results showed that, with appropriate SPI substitution, the farinograph properties of quinoa flour significantly improved (P < 0.05). The sample with 8% SPI substitution showed a better development time (DT, 3.30 ± 0.20 min), stability time (ST, 8.80 ± 0.10 min) and softening degree (SD, 8.80 ± 0.10 FU), which were close to those of wheat flour, although more water absorption (WA, 76.40 ± 2.10%) was needed than for wheat flour (66.30 ± 3.10%). The extensograph properties of quinoa flour also significantly improved after 8% SPI substitution (P < 0.05). Furthermore, SPI substitution increased G' moduli of quinoa dough and decreased tan δ to some extent, providing better rheological properties closer to those of wheat dough. SPI substitution also improved the quality and texture of quinoa bread and reduced the gap with wheat bread. When SPI substitution was 8%, the specific volume, hardness and springiness of quinoa bread were 2.29 ± 0.05 mL g-1 , 1496.47 ± 85.21 g and 0.71 ± 0.03%, respectively. CONCLUSION: These results suggested that SPI substitution would be an effective way to develop higher-quality gluten-free bread. © 2022 Society of Chemical Industry.


Subject(s)
Bread , Chenopodium quinoa , Flour , Soybean Proteins/chemistry , Triticum/chemistry , Glutens/chemistry
14.
J Sci Food Agric ; 103(3): 1194-1204, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36088619

ABSTRACT

BACKGROUND: Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS: The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION: The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.


Subject(s)
Globulins , Glycine max , Glycine max/chemistry , Soybean Proteins/chemistry , Trehalose , Molecular Docking Simulation , Globulins/chemistry , Allergens
15.
Angew Chem Int Ed Engl ; 62(36): e202308523, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37370248

ABSTRACT

Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2 ) reduction half-reaction and the water (H2 O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust -C=C- bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron-hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2 O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 µmol g-1 h-1 with about 100 % selectivity) and oxygen (O2 ) evolution (90.2 µmol g-1 h-1 ) among all the porous catalysts in CO2 reduction with H2 O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure-function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.

16.
EMBO J ; 37(2): 219-234, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29222176

ABSTRACT

The extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER) proteins that bind the plasma membrane (PM) via C2 domains and transport lipids between them via SMP domains. E-Syt1 tethers and transports lipids in a Ca2+-dependent manner, but the role of Ca2+ in this regulation is unclear. Of the five C2 domains of E-Syt1, only C2A and C2C contain Ca2+-binding sites. Using liposome-based assays, we show that Ca2+ binding to C2C promotes E-Syt1-mediated membrane tethering by releasing an inhibition that prevents C2E from interacting with PI(4,5)P2-rich membranes, as previously suggested by studies in semi-permeabilized cells. Importantly, Ca2+ binding to C2A enables lipid transport by releasing a charge-based autoinhibitory interaction between this domain and the SMP domain. Supporting these results, E-Syt1 constructs defective in Ca2+ binding in either C2A or C2C failed to rescue two defects in PM lipid homeostasis observed in E-Syts KO cells, delayed diacylglycerol clearance from the PM and impaired Ca2+-triggered phosphatidylserine scrambling. Thus, a main effect of Ca2+ on E-Syt1 is to reverse an autoinhibited state and to couple membrane tethering with lipid transport.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Lipid Metabolism/physiology , Synaptotagmins/metabolism , Biological Transport, Active/physiology , Cell Line , Cell Membrane/genetics , Endoplasmic Reticulum/genetics , Humans , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Domains , Synaptotagmins/genetics
17.
Mol Psychiatry ; 26(11): 6506-6519, 2021 11.
Article in English | MEDLINE | ID: mdl-33931732

ABSTRACT

Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.


Subject(s)
Extinction, Psychological , Fear , Adaptor Proteins, Signal Transducing/metabolism , Animals , Ligands , Mice , Nitric Oxide Synthase Type I/metabolism
18.
Cereb Cortex ; 31(3): 1707-1718, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33188393

ABSTRACT

Posttraumatic stress disorder subjects usually show impaired recall of extinction memory, leading to extinguished fear relapses. However, little is known about the neural mechanisms underlying the impaired recall of extinction memory. We show here that the activity of dorsal hippocampus (dHPC) to infralimbic (IL) cortex circuit is essential for the recall of fear extinction memory in male mice. There were functional neural projections from the dHPC to IL. Using optogenetic manipulations, we observed that silencing the activity of dHPC-IL circuit inhibited recall of extinction memory while stimulating the activity of dHPC-IL circuit facilitated recall of extinction memory. "Impairment of extinction consolidation caused by" conditional deletion of extracellular signal-regulated kinase 2 (ERK2) in the IL prevented the dHPC-IL circuit-mediated recall of extinction memory. Moreover, silencing the dHPC-IL circuit abolished the effect of intra-IL microinjection of ERK enhancer on the recall of extinction memory. Together, we identify a dHPC to IL circuit that mediates the recall of extinction memory, and our data suggest that the dysfunction of dHPC-IL circuit and/or impaired extinction consolidation may contribute to extinguished fear relapses.


Subject(s)
Extinction, Psychological/physiology , Hippocampus/physiology , Memory/physiology , Neural Pathways/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Classical , Male , Mice, Inbred C57BL , Stress Disorders, Post-Traumatic/physiopathology
19.
Proc Natl Acad Sci U S A ; 116(45): 22619-22623, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31636202

ABSTRACT

Contacts between the endoplasmic reticulum (ER) and other membranes are hot spots for protein-mediated lipid transport between the 2 adjacent bilayers. Compiling a molecular inventory of lipid transport proteins present at these sites is a premise to the elucidation of their function. Here we show that PDZD8, an intrinsic membrane protein of the ER with a lipid transport module of the SMP domain family, concentrates at contacts between the ER and late endosomes/lysosomes, where it interacts with GTP-Rab7. These findings suggest that PDZD8 may cooperate with other proteins that function at the ER-endo/lysosome interface in coordinating endocytic flow with lipid transport between endocytic membranes and the ER.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Lysosomes/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/genetics , Endosomes/genetics , Humans , Lysosomes/genetics , Protein Binding , Protein Domains , Protein Transport , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
20.
Proc Natl Acad Sci U S A ; 116(12): 5775-5784, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819882

ABSTRACT

Close appositions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are a general feature of all cells and are abundant in neurons. A function of these appositions is lipid transport between the two adjacent bilayers via tethering proteins that also contain lipid transport modules. However, little is known about the properties and dynamics of these proteins in neurons. Here we focused on TMEM24/C2CD2L, an ER-localized SMP domain containing phospholipid transporter expressed at high levels in the brain, previously shown to be a component of ER-PM contacts in pancreatic ß-cells. TMEM24 is enriched in neurons versus glial cells and its levels increase in parallel with neuronal differentiation. It populates ER-PM contacts in resting neurons, but elevations of cytosolic Ca2+ mediated by experimental manipulations or spontaneous activity induce its transient redistribution throughout the entire ER. Dissociation of TMEM24 from the plasma membrane is mediated by phosphorylation of an array of sites in the C-terminal region of the protein. These sites are only partially conserved in C2CD2, the paralogue of TMEM24 primarily expressed in nonneuronal tissues, which correspondingly display a much lower sensitivity to Ca2+ elevations. ER-PM contacts in neurons are also sites where Kv2 (the major delayed rectifier K+ channels in brain) and other PM and ER ion channels are concentrated, raising the possibility of a regulatory feedback mechanism between neuronal excitability and lipid exchange between the ER and the PM.


Subject(s)
Calcium Signaling/physiology , Membrane Proteins/metabolism , Neurons/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Cell Line , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Lipids , Mammals/metabolism , Membrane Proteins/physiology , Mice , Neurons/metabolism , Phospholipids/metabolism , Phosphorylation , Primary Cell Culture , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL