Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Chem Inf Model ; 64(5): 1682-1690, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38417111

ABSTRACT

Epitranscriptomic mRNA modifications affect gene expression, with their altered balance detected in various cancers. YTHDF proteins contain the YTH reader domain recognizing the m6A mark on mRNA and represent valuable drug targets. Crystallographic structures have been determined for all three family members; however, discrepancies are present in the organization of the m6A-binding pocket. Here, we present new crystallographic structures of the YTH domain of YTHDF1, accompanied by computational studies, showing that this domain can exist in different stable conformations separated by a significant energetic barrier. During the transition, additional conformations are explored, with peculiar druggable pockets appearing and offering new opportunities for the design of YTH-interfering small molecules.


Subject(s)
RNA-Binding Proteins , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Pliability , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Molecular Conformation
2.
Proteins ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36779817

ABSTRACT

Protein expression and function in eukaryotic cells are tightly harmonized processes modulated by the combination of different layers of regulation, including transcription, processing, stability, and translation of messenger RNA, as well as assembly, maturation, sorting, recycling, and degradation of polypeptides. Integrating all these pathways and the protein quality control machinery, deputed to avoid the production and accumulation of aberrantly folded proteins, determines protein homeostasis. Over the last decade, the combined development of accurate time-resolved experimental techniques and efficient computer simulations has opened the possibility of investigating biological mechanisms at atomic resolution with physics-based models. A meaningful example is the reconstruction of protein folding pathways at atomic resolution, which has enabled the characterization of the folding kinetics of biologically relevant globular proteins consisting of a few hundred amino acids. Combining these innovative computational technologies with rigorous experimental approaches reveals the existence of non-native metastable states transiently appearing along the folding process of such proteins. Here, we review the primary evidence indicating that these protein folding intermediates could play roles in disparate biological processes, from the posttranslational regulation of protein expression to disease-relevant protein misfolding mechanisms. Finally, we discuss how the information encoded into protein folding pathways could be exploited to design an entirely new generation of pharmacological agents capable of promoting the selective degradation of protein targets.

3.
Brain ; 144(12): 3710-3726, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34972208

ABSTRACT

Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cyclophilin A/genetics , Frontotemporal Dementia/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Cyclophilin A/deficiency , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Humans , Mice , Mice, Knockout
4.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887312

ABSTRACT

The formation of a tetrameric assembly is essential for the ability of the tumor suppressor protein p53 to act as a transcription factor. Such a quaternary conformation is driven by a specific tetramerization domain, separated from the central DNA-binding domain by a flexible linker. Despite the distance, functional crosstalk between the two domains has been reported. This phenomenon can explain the pathogenicity of some inherited or somatically acquired mutations in the tetramerization domain, including the widespread R337H missense mutation present in the population in south Brazil. In this work, we combined computational predictions through extended all-atom molecular dynamics simulations with functional assays in a genetically defined yeast-based model system to reveal structural features of p53 tetramerization domains and their transactivation capacity and specificity. In addition to the germline and cancer-associated R337H and R337C, other rationally designed missense mutations targeting a significant salt-bridge interaction that stabilizes the p53 tetramerization domain were studied (i.e., R337D, D352R, and the double-mutation R337D plus D352R). The simulations revealed a destabilizing effect of the pathogenic mutations within the p53 tetramerization domain and highlighted the importance of electrostatic interactions between residues 337 and 352. The transactivation assay, performed in yeast by tuning the expression of wild-type and mutant p53 proteins, revealed that p53 tetramerization mutations could decrease the transactivation potential and alter transactivation specificity, in particular by better tolerating negative features in weak DNA-binding sites. These results establish the effect of naturally occurring variations at positions 337 and 352 on p53's conformational stability and function.


Subject(s)
Saccharomyces cerevisiae , Tumor Suppressor Protein p53 , DNA , Mutant Proteins/metabolism , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tumor Suppressor Protein p53/metabolism
5.
PLoS Pathog ; 15(7): e1007864, 2019 07.
Article in English | MEDLINE | ID: mdl-31295325

ABSTRACT

Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-ß-Sheet (PIRIBS) [2] or ß-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung ß-solenoid (4RßS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RßS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring ß-solenoid. Importantly, the 4RßS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.


Subject(s)
PrPSc Proteins/chemistry , PrPSc Proteins/pathogenicity , Prions/chemistry , Prions/pathogenicity , Animals , Cryoelectron Microscopy , Mice , Models, Molecular , Molecular Dynamics Simulation , PrPC Proteins , PrPSc Proteins/ultrastructure , Prions/ultrastructure , Protein Conformation , Protein Structure, Quaternary
6.
PLoS Comput Biol ; 16(9): e1007922, 2020 09.
Article in English | MEDLINE | ID: mdl-32946455

ABSTRACT

Prions are self-replicative protein particles lacking nucleic acids. Originally discovered for causing infectious neurodegenerative disorders, they have also been found to play several physiological roles in a variety of species. Functional and pathogenic prions share a common mechanism of replication, characterized by the ability of an amyloid conformer to propagate by inducing the conversion of its physiological, soluble counterpart. Since time-resolved biophysical experiments are currently unable to provide full reconstruction of the physico-chemical mechanisms responsible for prion replication, one must rely on computer simulations. In this work, we show that a recently developed algorithm called Self-Consistent Path Sampling (SCPS) overcomes the computational limitations of plain MD and provides a viable tool to investigate prion replication processes using state-of-the-art all-atom force fields in explicit solvent. First, we validate the reliability of SCPS simulations by characterizing the folding of a class of small proteins and comparing against the results of plain MD simulations. Next, we use SCPS to investigate the replication of the prion forming domain of HET-s, a physiological fungal prion for which high-resolution structural data are available. Our atomistic reconstruction shows remarkable similarities with a previously reported mechanism of mammalian PrPSc propagation obtained using a simpler and more approximate path sampling algorithm. Together, these results suggest that the propagation of prions generated by evolutionary distant proteins may share common features. In particular, in both these cases, prions propagate their conformation through a very similar templating mechanism.


Subject(s)
Fungal Proteins , Molecular Dynamics Simulation , Prions , Algorithms , Computational Biology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Prions/chemistry , Prions/metabolism , Protein Conformation , Protein Folding
7.
J Neurochem ; 152(1): 136-150, 2020 01.
Article in English | MEDLINE | ID: mdl-31264722

ABSTRACT

The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.


Subject(s)
Cell Membrane/chemistry , PrPC Proteins/analysis , Prions/antagonists & inhibitors , Animals , Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical/methods , Fluorescent Dyes , Gene Expression , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , HEK293 Cells , Harmaline/analogs & derivatives , Harmaline/pharmacology , Hematoxylin/analogs & derivatives , Hematoxylin/pharmacology , Humans , Mice , Neuroblastoma , PrPC Proteins/genetics , Prions/biosynthesis , Prions/toxicity , Quinacrine/pharmacology , Tacrolimus/pharmacology
8.
Bioorg Med Chem ; 28(21): 115717, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33065443

ABSTRACT

Prions are misfolded proteins involved in neurodegenerative diseases of high interest in veterinary and public health. In this work, we report the chemical space exploration around the anti-prion compound BB 0300674 in order to gain an understanding of its Structure Activity Relationships (SARs). A series of 43 novel analogues, based on four different chemical clusters, were synthetized and tested against PrPSc and mutant PrP toxicity assays. From this biological screening, two compounds (59 and 65) emerged with a 10-fold improvement in anti-prion activity compared with the initial lead compound, presenting at the same time interesting cell viability.


Subject(s)
Benzylamines/chemistry , PrPSc Proteins/metabolism , Animals , Benzylamines/chemical synthesis , Benzylamines/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Mice , Mutagenesis , PrPSc Proteins/antagonists & inhibitors , PrPSc Proteins/genetics , Structure-Activity Relationship
9.
Nucleic Acids Res ; 45(16): 9514-9527, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28934484

ABSTRACT

The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3'UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.


Subject(s)
ELAV-Like Protein 1/chemistry , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , 3' Untranslated Regions , AU Rich Elements , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , ELAV-Like Protein 1/antagonists & inhibitors , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Furans , Humans , Magnetic Resonance Spectroscopy , Mice, Neurologic Mutants , Molecular Dynamics Simulation , Phenanthrenes/metabolism , Point Mutation , Protein Conformation , Protein Domains , Quinones , RNA, Messenger/metabolism , Xenograft Model Antitumor Assays
10.
Biol Chem ; 397(11): 1115-1124, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27279060

ABSTRACT

A number of unexpected pathophysiological connections linking different neurodegenerative diseases have emerged over the past decade. An example is provided by prion and Alzheimer's diseases. Despite being distinct pathologies, these disorders share several neurotoxic mechanisms, including accumulation of misfolded protein isoforms, stress of the protein synthesis machinery, and activation of a neurotoxic signaling mediated by the cellular prion protein. Here, in addition to reviewing these mechanisms, we will discuss the potential therapeutic interventions for prion and Alzheimer's diseases that are arising from the comprehension of their common neurodegenerative pathways.


Subject(s)
Alzheimer Disease/therapy , Prion Diseases/therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Gene Silencing , Humans , PrPC Proteins/deficiency , PrPC Proteins/genetics , PrPC Proteins/metabolism , Prion Diseases/drug therapy , Prion Diseases/genetics , Prion Diseases/metabolism , Signal Transduction/drug effects
11.
J Neurosci ; 33(6): 2408-18, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23392670

ABSTRACT

Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, ß-rich oligomers that bind to PrP(C).


Subject(s)
Excitatory Amino Acid Agonists/toxicity , Glutamic Acid/toxicity , Mice, Inbred C57BL/physiology , Mutation/physiology , Neurons/physiology , PrPC Proteins/biosynthesis , Animals , Cells, Cultured , Mice , Mice, Transgenic , Neurons/drug effects , Organ Culture Techniques , PrPC Proteins/genetics
12.
J Biol Chem ; 288(11): 7857-7866, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23362282

ABSTRACT

A hallmark of Alzheimer disease (AD) is the accumulation of the amyloid-ß (Aß) peptide in the brain. Considerable evidence suggests that soluble Aß oligomers are responsible for the synaptic dysfunction and cognitive deficit observed in AD. However, the mechanism by which these oligomers exert their neurotoxic effect remains unknown. Recently, it was reported that Aß oligomers bind to the cellular prion protein with high affinity. Here, we show that N1, the main physiological cleavage fragment of the cellular prion protein, is necessary and sufficient for binding early oligomeric intermediates during Aß polymerization into amyloid fibrils. The ability of N1 to bind Aß oligomers is influenced by positively charged residues in two sites (positions 23-31 and 95-105) and is dependent on the length of the sequence between them. Importantly, we also show that N1 strongly suppresses Aß oligomer toxicity in cultured murine hippocampal neurons, in a Caenorhabditis elegans-based assay, and in vivo in a mouse model of Aß-induced memory dysfunction. These data suggest that N1, or small peptides derived from it, could be potent inhibitors of Aß oligomer toxicity and represent an entirely new class of therapeutic agents for AD.


Subject(s)
Amyloid beta-Peptides/chemistry , Prions/chemistry , Alzheimer Disease/metabolism , Amyloidogenic Proteins/chemistry , Animals , Benzothiazoles , Caenorhabditis elegans/metabolism , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Models, Biological , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Surface Plasmon Resonance , Synapses/metabolism , Thiazoles/chemistry
13.
Biochem J ; 454(3): 417-25, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23808898

ABSTRACT

Genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia and prion protein cerebral amyloid angiopathy are clinically and neuropathologically distinct neurodegenerative diseases linked to mutations in the PRNP gene encoding the cellular prion protein (PrPC). How sequence variants of PRNP encode the information to specify these disease phenotypes is not known. It is suggested that each mutation produces a misfolded variant of PrPC with specific neurotoxic properties. However, structural studies of recombinant PrP did not detect major differences between wild-type and mutant molecules, pointing to the importance of investigating mutant PrPs from mammalian brains. We used surface plasmon resonance and a slot-blot immunoassay to analyse the antibody-binding profiles of soluble and insoluble PrP molecules extracted from the brains of transgenic mice modelling different prion diseases. By measuring the reactivity of monoclonal antibodies against different PrP epitopes, we obtained evidence of conformational differences between wild-type and mutant PrPs, and among different mutants. We detected structural heterogeneity in both monomeric and aggregated PrP, supporting the hypothesis that the phenotype of genetic prion diseases is encoded by mutant PrP conformation and assembly state.


Subject(s)
Brain/metabolism , Creutzfeldt-Jakob Syndrome/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , Prions/metabolism , Animals , Antibodies, Monoclonal/chemistry , Creutzfeldt-Jakob Syndrome/genetics , Detergents/chemistry , Epitope Mapping , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Mutation, Missense , Polymorphism, Genetic , Prions/chemistry , Prions/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sodium Dodecyl Sulfate/chemistry , Surface Plasmon Resonance
14.
J Neurosci ; 32(26): 8817-30, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22745483

ABSTRACT

Prion propagation involves a templating reaction in which the infectious form of the prion protein (PrP(Sc)) binds to the cellular form (PrP(C)), generating additional molecules of PrP(Sc). While several regions of the PrP(C) molecule have been suggested to play a role in PrP(Sc) formation based on in vitro studies, the contribution of these regions in vivo is unclear. Here, we report that mice expressing PrP deleted for a short, polybasic region at the N terminus (residues 23-31) display a dramatically reduced susceptibility to prion infection and accumulate greatly reduced levels of PrP(Sc). These results, in combination with biochemical data, demonstrate that residues 23-31 represent a critical site on PrP(C) that binds to PrP(Sc) and is essential for efficient prion propagation. It may be possible to specifically target this region for treatment of prion diseases as well as other neurodegenerative disorders due to ß-sheet-rich oligomers that bind to PrP(C).


Subject(s)
Brain/metabolism , Peptide Fragments/metabolism , PrPC Proteins/metabolism , PrPSc Proteins/chemistry , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Age Factors , Animals , Brain/pathology , Cell Line, Transformed , Cricetinae , Disease Models, Animal , Endocytosis/genetics , Gene Expression Regulation/genetics , Humans , Immunization/methods , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroblastoma/pathology , Peptide Fragments/genetics , PrPC Proteins/genetics , Prion Diseases/genetics , Prion Diseases/immunology , Prion Diseases/pathology , Protein Binding/genetics , Protein Structure, Secondary/genetics , Scrapie/metabolism , Scrapie/pathology , Sequence Deletion/genetics , Time Factors , Transfection
15.
Proc Natl Acad Sci U S A ; 107(5): 2295-300, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133875

ABSTRACT

Inability to form new memories is an early clinical sign of Alzheimer's disease (AD). There is ample evidence that the amyloid-beta (Abeta) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Abeta are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Abeta-mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Abeta(1-42) oligomers impaired consolidation of the long-term recognition memory, whereas mature Abeta(1-42) fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Abeta antibody. It has been suggested that the cellular prion protein (PrP(C)) mediates the impairment of synaptic plasticity induced by Abeta. We confirmed that Abeta(1-42) oligomers interact with PrP(C), with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Abeta(1-42) oligomers are responsible for cognitive impairment in AD and that PrP(C) is not required.


Subject(s)
Amyloid beta-Peptides/pharmacology , Memory/drug effects , Peptide Fragments/pharmacology , PrPC Proteins/metabolism , Alzheimer Disease/etiology , Amyloid beta-Peptides/chemical synthesis , Amyloid beta-Peptides/chemistry , Animals , Cognition Disorders/etiology , Cognition Disorders/metabolism , Humans , Injections, Intraventricular , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Prion Proteins , Prions/genetics , Prions/metabolism , Protein Binding , Surface Plasmon Resonance
16.
Neuroscience ; 531: 75-85, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37699442

ABSTRACT

Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Humans , Mice , Autism Spectrum Disorder/genetics , Gene Expression Profiling , Touch/physiology , Trigeminal Ganglion
17.
iScience ; 26(10): 107919, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37822503

ABSTRACT

Misfolded glycoprotein recognition and endoplasmic reticulum (ER) retention are mediated by the ER glycoprotein folding quality control (ERQC) checkpoint enzyme, UDP-glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. The small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a CtUGGTGT24 "WY" conserved surface motif conserved across UGGTs but not present in other GT24 family glycosyltransferases. 5M-8OH-Q has a 47 µM binding affinity for CtUGGTGT24in vitro as measured by ligand-enhanced fluorescence. In cellula, 5M-8OH-Q inhibits both human UGGT isoforms at concentrations higher than 750 µM. 5M-8OH-Q binding to CtUGGTGT24 appears to be mutually exclusive to M5-9 glycan binding in an in vitro competition experiment. A medicinal program based on 5M-8OH-Q will yield the next generation of UGGT inhibitors.

18.
J Biol Chem ; 286(16): 14724-36, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21385869

ABSTRACT

There is evidence that alterations in the normal physiological activity of PrP(C) contribute to prion-induced neurotoxicity. This mechanism has been difficult to investigate, however, because the normal function of PrP(C) has remained obscure, and there are no assays available to measure it. We recently reported that cells expressing PrP deleted for residues 105-125 exhibit spontaneous ionic currents and hypersensitivity to certain classes of cationic drugs. Here, we utilize cell culture assays based on these two phenomena to test how changes in PrP sequence and/or cellular localization affect the functional activity of the protein. We report that the toxic activity of Δ105-125 PrP requires localization to the plasma membrane and depends on the presence of a polybasic amino acid segment at the N terminus of PrP. Several different deletions spanning the central region as well as three disease-associated point mutations also confer toxic activity on PrP. The sequence domains identified in our study are also critical for PrP(Sc) formation, suggesting that common structural features may govern both the functional activity of PrP(C) and its conversion to PrP(Sc).


Subject(s)
Cell Membrane/metabolism , Prions/chemistry , Animals , Cell Line , Cytoplasm/metabolism , Detergents/pharmacology , Electrophysiology/methods , Gene Deletion , Humans , Ions/chemistry , Mice , Mutation , Neurodegenerative Diseases/pathology , Prion Diseases/metabolism , Protein Structure, Tertiary
19.
Methods ; 53(3): 214-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21115124

ABSTRACT

Although a great deal of progress has been made in elucidating the molecular identity of the infectious agent in prion diseases, the mechanisms by which prions kill neurons, and the role of the cellular prion protein (PrP(C)) in this process, remain enigmatic. A window into the normal function of PrP(C), and how it can be corrupted to produce neurotoxic effects, is provided by a PrP deletion mutant called ΔCR, which produces a lethal phenotype when expressed in transgenic mice. In a previous study, we described the unusual observation that cells expressing ΔCR PrP are hyper-sensitive to the toxic effects of two cationic antibiotics (G418 and Zeocin) that are typically used for selection of transfected cell lines. We have used this drug-sensitizing effect to develop a simple Drug-Based Cell Assay (DBCA) that reproduces several features of mutant PrP toxicity observed in vivo, including the rescuing activity of wild-type PrP. In this paper, we present a detailed guide for executing the DBCA in several, different experimental settings, including a new slot blot-based format. This assay provides a unique tool for studying PrP cytotoxic and cytoprotective activities in cell culture.


Subject(s)
Biological Assay/methods , Cytoprotection , Cytotoxins/pharmacology , Prions/pharmacology , Amino Acid Sequence , Cell Survival , Coloring Agents , Formazans/chemistry , HEK293 Cells , Histones/metabolism , Humans , In Situ Nick-End Labeling/methods , Prions/genetics , Sequence Deletion , Tetrazolium Salts/chemistry
20.
Mol Cell Proteomics ; 9(4): 611-22, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19996123

ABSTRACT

The prion protein (PrP) is a glycosylphosphatidylinositol-anchored membrane glycoprotein that plays a vital role in prion diseases, a class of fatal neurodegenerative disorders of humans and animals. Approximately 20% of human prion diseases display autosomal dominant inheritance and are linked to mutations in the PrP gene on chromosome 20. PrP mutations are thought to favor the conformational conversion of PrP into a misfolded isoform that causes disease by an unknown mechanism. The PrP mutation D178N/Met-129 is linked to fatal familial insomnia, which causes severe sleep abnormalities and autonomic dysfunction. We showed by immunoelectron microscopy that this mutant PrP accumulates abnormally in the endoplasmic reticulum and Golgi of transfected neuroblastoma N2a cells. To investigate the impact of intracellular PrP accumulation on cellular homeostasis, we did a two-dimensional gel-based differential proteomics analysis. We used wide range immobilized pH gradient strips, pH 4-7 and 6-11, to analyze a large number of proteins. We found changes in proteins involved in energy metabolism, redox regulation, and vesicular transport. Rab GDP dissociation inhibitor alpha (GDI) was one of the proteins that changed most. GDI regulates vesicular protein trafficking by acting on the activity of several Rab proteins. We found a specific reduction in the level of functional Rab11 in mutant PrP-expressing cells associated with impaired post-Golgi trafficking. Our data are consistent with a model by which mutant PrP induces overexpression of GDI, activating a cytotoxic feedback loop that leads to protein accumulation in the secretory pathway.


Subject(s)
Guanine Nucleotide Dissociation Inhibitors/metabolism , Prions/genetics , Prions/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Gene Expression/physiology , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Guanine Nucleotide Dissociation Inhibitors/genetics , Guanine Nucleotide Dissociation Inhibitors/physiology , Humans , Mice , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neurons/metabolism , Prions/antagonists & inhibitors , Prions/physiology , Protein Transport/drug effects , Protein Transport/genetics , Protein Transport/physiology , Proteomics , RNA, Small Interfering/pharmacology , Secretory Pathway/drug effects , Secretory Pathway/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Tumor Cells, Cultured , rab GTP-Binding Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL