Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 14(7): 3938-44, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24873917

ABSTRACT

We report the Au catalyst-assisted synthesis of 20 µm long GaAs nanowires by the vapor-liquid-solid hydride vapor phase epitaxy (HVPE) exhibiting a polytypism-free zincblende phase for record radii lower than 15 nm down to 5 nm. HVPE makes use of GaCl gaseous growth precursors at high mass input of which fast dechlorination at the usual process temperature of 715 °C results in high planar growth rate (standard 30-40 µm/h). When it comes to the vapor-liquid-solid growth of nanowires, fast solidification at a rate higher than 100 µm/h is observed. Nanowire growth by HVPE only proceeds by introduction of precursors in the catalyst droplets from the vapor phase. This promotes almost pure axial growth leading to nanowires with a constant cylinder shape over unusual length. The question of the cubic zincblende structure observed in HVPE-grown GaAs nanowires regardless of their radius is at the heart of the paper. We demonstrate that the vapor-liquid-solid growth in our conditions takes place at high liquid chemical potential that originates from very high influxes of both As and Ga. This yields a Ga concentration systematically higher than 0.62 in the Au-Ga-As droplets. The high Ga concentration decreases the surface energy of the droplets, which disables nucleation at the triple phase line thus preventing the formation of wurtzite structure whatever the nanowire radius is.

2.
Ultramicroscopy ; 188: 13-18, 2018 05.
Article in English | MEDLINE | ID: mdl-29518620

ABSTRACT

A non-destructive new imaging technique called Multi-Mode Elastic Peak Electron Microscopy (MM-EPEM), hypersensitive to surface chemistry and with an in-depth resolution of one atomic monolayer was developed. This method consists on performing several MM-EPEM images containing n × n pixels associated to an intensity of the elastic backscattered electrons by varying the incident electron energy in the range 200-2000 eV. This approach allows obtaining depth sampling information of the analyzed structures. Furthermore, MM-EPEM is associated with Monte-Carlo simulations describing the electron pathway in materials in order to obtain very precise quantitative information, for instance the growth mode and the organization of ultra-thin layers (2D materials) or nanoparticules. In this work, we used this new method to study the deposition of very small amount of gold down to one monolayer. Example of 3D reconstruction is also provided.

SELECTION OF CITATIONS
SEARCH DETAIL