Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nature ; 620(7976): 1071-1079, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587343

ABSTRACT

Identifying therapeutics to delay, and potentially reverse, age-related cognitive decline is critical in light of the increased incidence of dementia-related disorders forecasted in the growing older population1. Here we show that platelet factors transfer the benefits of young blood to the ageing brain. Systemic exposure of aged male mice to a fraction of blood plasma from young mice containing platelets decreased neuroinflammation in the hippocampus at the transcriptional and cellular level and ameliorated hippocampal-dependent cognitive impairments. Circulating levels of the platelet-derived chemokine platelet factor 4 (PF4) (also known as CXCL4) were elevated in blood plasma preparations of young mice and humans relative to older individuals. Systemic administration of exogenous PF4 attenuated age-related hippocampal neuroinflammation, elicited synaptic-plasticity-related molecular changes and improved cognition in aged mice. We implicate decreased levels of circulating pro-ageing immune factors and restoration of the ageing peripheral immune system in the beneficial effects of systemic PF4 on the aged brain. Mechanistically, we identified CXCR3 as a chemokine receptor that, in part, mediates the cellular, molecular and cognitive benefits of systemic PF4 on the aged brain. Together, our data identify platelet-derived factors as potential therapeutic targets to abate inflammation and rescue cognition in old age.


Subject(s)
Aging , Cognition , Cognitive Dysfunction , Neuroinflammatory Diseases , Nootropic Agents , Platelet Factor 4 , Animals , Male , Mice , Aging/blood , Aging/drug effects , Aging/physiology , Cognition/drug effects , Cognition/physiology , Neuroinflammatory Diseases/blood , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/prevention & control , Platelet Factor 4/blood , Platelet Factor 4/metabolism , Platelet Factor 4/pharmacology , Platelet Factor 4/therapeutic use , Nootropic Agents/blood , Nootropic Agents/metabolism , Nootropic Agents/pharmacology , Nootropic Agents/therapeutic use , Plasma/chemistry , Hippocampus/drug effects , Hippocampus/physiology , Cognitive Dysfunction/blood , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Transcription, Genetic/drug effects , Neuronal Plasticity/drug effects
2.
PLoS Biol ; 19(6): e3001311, 2021 06.
Article in English | MEDLINE | ID: mdl-34181639

ABSTRACT

Proteins of the major histocompatibility complex class I (MHC I), predominantly known for antigen presentation in the immune system, have recently been shown to be necessary for developmental neural refinement and adult synaptic plasticity. However, their roles in nonneuronal cell populations in the brain remain largely unexplored. Here, we identify classical MHC I molecule H2-Kb as a negative regulator of proliferation in neural stem and progenitor cells (NSPCs). Using genetic knockout mouse models and in vivo viral-mediated RNA interference (RNAi) and overexpression, we delineate a role for H2-Kb in negatively regulating NSPC proliferation and adult hippocampal neurogenesis. Transcriptomic analysis of H2-Kb knockout NSPCs, in combination with in vitro RNAi, overexpression, and pharmacological approaches, further revealed that H2-Kb inhibits cell proliferation by dampening signaling pathways downstream of fibroblast growth factor receptor 1 (Fgfr1). These findings identify H2-Kb as a critical regulator of cell proliferation through the modulation of growth factor signaling.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Aging/metabolism , Animals , Cell Cycle , Cell Proliferation , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis
3.
Nature ; 544(7650): 367-371, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28405022

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Ataxin-2/deficiency , DNA-Binding Proteins/metabolism , Longevity , Oligonucleotides, Antisense/therapeutic use , Protein Aggregation, Pathological/therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Ataxin-2/genetics , Central Nervous System/metabolism , Cytoplasmic Granules/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Disease Progression , Female , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Motor Skills/physiology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Protein Aggregation, Pathological/genetics , Stress, Physiological , Survival Analysis
4.
Proc Natl Acad Sci U S A ; 117(36): 22214-22224, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32848054

ABSTRACT

Increased neural stem cell (NSC) quiescence is a major determinant of age-related regenerative decline in the adult hippocampus. However, a coextensive model has been proposed in which division-coupled conversion of NSCs into differentiated astrocytes restrict the stem cell pool with age. Here we report that age-related loss of the posttranslational modification, O-linked ß-N-acetylglucosamine (O-GlcNAc), in NSCs promotes a glial fate switch. We detect an age-dependent decrease in NSC O-GlcNAc levels coincident with decreased neurogenesis and increased gliogenesis in the mature hippocampus. Mimicking an age-related loss of NSC O-GlcNAcylation in young mice reduces neurogenesis, increases astrocyte differentiation, and impairs associated cognitive function. Using RNA-sequencing of primary NSCs following decreased O-GlcNAcylation, we detected changes in the STAT3 signaling pathway indicative of glial differentiation. Moreover, using O-GlcNAc-specific mass spectrometry analysis of the aging hippocampus, together with an in vitro site-directed mutagenesis approach, we identify loss of STAT3 O-GlcNAc at Threonine 717 as a driver of astrocyte differentiation. Our data identify the posttranslational modification, O-GlcNAc, as a key molecular regulator of regenerative decline underlying an age-related NSC fate switch.


Subject(s)
Aging/physiology , Cell Differentiation/physiology , Glucosamine/analogs & derivatives , Neural Stem Cells/physiology , Neuroglia/physiology , STAT3 Transcription Factor/metabolism , Animals , Cell Proliferation , Computational Biology , Gene Expression Regulation , Glucosamine/metabolism , Hippocampus/cytology , Mice , Neurogenesis , STAT3 Transcription Factor/genetics , Sequence Analysis, RNA
5.
Acta Neuropathol ; 137(6): 961-980, 2019 06.
Article in English | MEDLINE | ID: mdl-30927072

ABSTRACT

Progressive aggregation of the protein alpha-synuclein (α-syn) and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are key histopathological hallmarks of Parkinson's disease (PD). Accruing evidence suggests that α-syn pathology can propagate through neuronal circuits in the brain, contributing to the progressive nature of the disease. Thus, it is therapeutically pertinent to identify modifiers of α-syn transmission and aggregation as potential targets to slow down disease progression. A growing number of genetic mutations and risk factors has been identified in studies of familial and sporadic forms of PD. However, how these genes affect α-syn aggregation and pathological transmission, and whether they can be targeted for therapeutic interventions, remains unclear. We performed a targeted genetic screen of risk genes associated with PD and parkinsonism for modifiers of α-syn aggregation, using an α-syn preformed-fibril (PFF) induction assay. We found that decreased expression of Lrrk2 and Gba modulated α-syn aggregation in mouse primary neurons. Conversely, α-syn aggregation increased in primary neurons from mice expressing the PD-linked LRRK2 G2019S mutation. In vivo, using LRRK2 G2019S transgenic mice, we observed acceleration of α-syn aggregation and degeneration of dopaminergic neurons in the SNpc, exacerbated degeneration-associated neuroinflammation and behavioral deficits. To validate our findings in a human context, we established a novel human α-syn transmission model using induced pluripotent stem cell (iPS)-derived neurons (iNs), where human α-syn PFFs triggered aggregation of endogenous α-syn in a time-dependent manner. In PD subject-derived iNs, the G2019S mutation enhanced α-syn aggregation, whereas loss of LRRK2 decreased aggregation. Collectively, these findings establish a strong interaction between the PD risk gene LRRK2 and α-syn transmission across mouse and human models. Since clinical trials of LRRK2 inhibitors in PD are currently underway, our findings raise the possibility that these may be effective in PD broadly, beyond cases caused by LRRK2 mutations.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/physiology , Mutation, Missense , Neurons/metabolism , Parkinson Disease/genetics , Protein Aggregation, Pathological/etiology , alpha-Synuclein/metabolism , Amyloid/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Exploratory Behavior , Glucosylceramidase/genetics , Hippocampus/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/deficiency , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Parkinson Disease/pathology , Pars Compacta/pathology , Primary Cell Culture , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , RNA Interference , Recombinant Proteins/metabolism , Rotarod Performance Test
6.
Neurobiol Dis ; 109(Pt B): 219-225, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28323023

ABSTRACT

Intra-neuronal protein aggregates made of fibrillar alpha-synuclein (α-syn) are the hallmark of Parkinson's disease (PD). With time, these aggregates spread through the brain following axonal projections. Understanding the mechanism of this spread is central to the study of the progressive nature of PD. Here we review data relevant to the uptake, transport and release of α-syn fibrils. We summarize several cell surface receptors that regulate the uptake of α-syn fibrils by neurons. The aggregates are then transported along axons, both in the anterograde and retrograde direction. The kinetics of transport suggests that they are part of the slow component b of axonal transport. Recent findings indicate that aggregated α-syn is secreted by neurons by non-canonical pathways that may implicate various molecular chaperones including USP19 and the DnaJ/Hsc70 complex. Additionally, α-syn fibrils may also be released and transmitted from neuron-to-neuron via exosomes and tunneling nanotubes. Understanding these different mechanisms and molecular players underlying α-syn spread is crucial for the development of therapies that could halt the progression of α-syn-related degenerative diseases.


Subject(s)
Axonal Transport/physiology , Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Neurodegenerative Diseases/metabolism
7.
Nature ; 477(7362): 90-4, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21886162

ABSTRACT

In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines--including CCL11 (also known as eotaxin)--the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.


Subject(s)
Chemokines/blood , Chemokines/metabolism , Learning/physiology , Neurogenesis/physiology , Aging , Animals , Chemokine CCL11/blood , Chemokine CCL11/cerebrospinal fluid , Chemokine CCL11/metabolism , Chemokine CCL11/pharmacology , Chemokines/cerebrospinal fluid , Female , Learning/drug effects , Learning Disabilities/blood , Learning Disabilities/cerebrospinal fluid , Learning Disabilities/physiopathology , Male , Memory Disorders/blood , Memory Disorders/cerebrospinal fluid , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Parabiosis , Plasma/chemistry , Time Factors
8.
Acta Neuropathol ; 131(4): 539-48, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26820848

ABSTRACT

Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, ß-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aß42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aß42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aß42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.


Subject(s)
Amyloid beta-Peptides/metabolism , Axonal Transport/physiology , Huntingtin Protein/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Polyglutamic Acid/metabolism , alpha-Synuclein/metabolism , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Brain/pathology , Cholera Toxin/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Embryo, Mammalian , Glutathione Peroxidase/metabolism , Humans , Huntingtin Protein/genetics , Lab-On-A-Chip Devices , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes/metabolism , Peptide Termination Factors/metabolism , Polyglutamic Acid/genetics , Prions/metabolism , Saccharomyces cerevisiae Proteins/metabolism
9.
J Neurosci ; 34(24): 8083-97, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24920614

ABSTRACT

Mutations in the PFN1 gene encoding profilin 1 are a rare cause of familial amyotrophic lateral sclerosis (ALS). Profilin 1 is a well studied actin-binding protein but how PFN1 mutations cause ALS is unknown. The budding yeast, Saccharomyces cerevisiae, has one PFN1 ortholog. We expressed the ALS-linked profilin 1 mutant proteins in yeast, demonstrating a loss of protein stability and failure to restore growth to profilin mutant cells, without exhibiting gain-of-function toxicity. This model provides for simple and rapid screening of novel ALS-linked PFN1 variants. To gain insight into potential novel roles for profilin 1, we performed an unbiased, genome-wide synthetic lethal screen with yeast cells lacking profilin (pfy1Δ). Unexpectedly, deletion of several stress granule and processing body genes, including pbp1Δ, were found to be synthetic lethal with pfy1Δ. Mutations in ATXN2, the human ortholog of PBP1, are a known ALS genetic risk factor and ataxin 2 is a stress granule component in mammalian cells. Given this genetic interaction and recent evidence linking stress granule dynamics to ALS pathogenesis, we hypothesized that profilin 1 might also associate with stress granules. Here we report that profilin 1 and related protein profilin 2 are novel stress granule-associated proteins in mouse primary cortical neurons and in human cell lines and that ALS-linked mutations in profilin 1 alter stress granule dynamics, providing further evidence for the potential role of stress granules in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cytoplasmic Granules/metabolism , Mutation/genetics , Oxidative Stress/genetics , Profilins/genetics , Animals , Arsenites/pharmacology , Ataxins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , Cycloheximide/pharmacology , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/genetics , DNA Helicases , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-1/metabolism , Humans , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Oxidative Stress/drug effects , Poly-ADP-Ribose Binding Proteins , Protein Synthesis Inhibitors/pharmacology , RNA Helicases , RNA Recognition Motif Proteins , Teratogens/pharmacology , Two-Hybrid System Techniques
10.
J Pain ; 25(1): 53-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37482234

ABSTRACT

Most reports agree that aging negatively impacts pain processing and that the prevalence of chronic pain increases significantly with age. To improve current therapies, it is critical that aged animals be included in preclinical studies. Here we compared sensitivities to pain and itch-provoking stimuli in naïve and injured young and aged mice. Surprisingly, we found that in the absence of injury, aged male and female mice are significantly less responsive to mechanical stimuli and, in females, also to noxious thermal (heat) stimuli. In both older male and female mice, compared to younger (6-month-old mice), we also recorded reduced pruritogen-evoked scratching. On the other hand, after nerve injury, aged mice nevertheless developed significant mechanical hypersensitivity. Interestingly, however, and in contrast to young mice, aged mice developed both ipsilateral and contralateral postinjury mechanical allodynia. In a parallel immunohistochemical analysis of microglial and astrocyte markers, we found that the ipsilateral to the contralateral ratio of nerve injury-induced expression decreased with age. That observation is consistent with our finding of contralateral hypersensitivity after nerve injury in the aged but not the young mice. We conclude that aging has opposite effects on baseline versus postinjury pain and itch processing. PERSPECTIVE: Aged male and female mice (22-24 months) are less sensitive to mechanical, thermal (heat), and itch-provoking stimuli than are younger mice (6 months).


Subject(s)
Pain , Pruritus , Male , Female , Mice , Animals , Hyperalgesia/etiology
11.
Nat Neurosci ; 26(3): 379-393, 2023 03.
Article in English | MEDLINE | ID: mdl-36646876

ABSTRACT

Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.


Subject(s)
Proteomics , Rejuvenation , Rejuvenation/physiology , Brain , Head
12.
Nat Commun ; 14(1): 4375, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587147

ABSTRACT

The beneficial effects of physical activity on brain ageing are well recognised, with exerkines, factors that are secreted into the circulation in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear. Here we provide evidence that an anti-geronic exerkine is secreted by platelets. We show that platelets are activated by exercise and are required for the exercise-induced increase in hippocampal precursor cell proliferation in aged mice. We also demonstrate that increasing the systemic levels of the platelet-derived exerkine CXCL4/platelet factor 4 (PF4) ameliorates age-related regenerative and cognitive impairments in a hippocampal neurogenesis-dependent manner. Together these findings highlight the role of platelets in mediating the rejuvenating effects of exercise during physiological brain ageing.


Subject(s)
Aging , Cognitive Dysfunction , Neurogenesis , Platelet Factor 4 , Animals , Mice , Blood Platelets , Cognition , Hippocampus , Immunologic Factors
13.
Cell Rep ; 42(9): 113151, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37713310

ABSTRACT

Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.


Subject(s)
Caenorhabditis elegans , Cognition , Humans , Animals , Mice , Aged , Child, Preschool , Aged, 80 and over , Caenorhabditis elegans/metabolism , Cognition/physiology , Signal Transduction/physiology , Neurons/metabolism , Memory/physiology , GTP-Binding Proteins/metabolism , Hippocampus/metabolism , Aging/metabolism , Mammals/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
14.
Cell Rep ; 41(6): 111631, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351406

ABSTRACT

An emerging view regarding neurodegenerative diseases is that discreet seeding of misfolded proteins leads to widespread pathology. However, the mechanisms by which misfolded proteins seed distinct brain regions and cause differential whole-brain pathology remain elusive. We used whole-brain tissue clearing and high-resolution imaging to longitudinally map pathology in an α-synuclein pre-formed fibril injection model of Parkinson's disease. Cleared brains at different time points of disease progression were quantitatively segmented and registered to a standardized atlas, revealing distinct phases of spreading and decline. We then fit a computational model with parameters that represent α-synuclein pathology spreading, aggregation, decay, and gene expression pattern to this longitudinal dataset. Remarkably, our model can generalize to predicting α-synuclein spreading patterns from several distinct brain regions and can even estimate their origins. This model empowers mechanistic understanding and accurate prediction of disease progression, paving the way for the development and testing of therapeutic interventions.


Subject(s)
Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Brain/metabolism , Disease Progression , Gene Expression
16.
Cell Rep ; 41(6): 111612, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351399

ABSTRACT

DNA methylation has emerged as a critical modulator of neuronal plasticity and cognitive function. Notwithstanding, the role of enzymes that demethylate DNA remain to be fully explored. Here, we report that loss of ten-eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), in adult neurons enhances cognitive function. In the adult mouse hippocampus, we detected an enrichment of Tet2 in neurons. Viral-mediated neuronal overexpression and RNA interference of Tet2 altered dendritic complexity and synaptic-plasticity-related gene expression in vitro. Overexpression of neuronal Tet2 in adult hippocampus, and loss of Tet2 in adult glutamatergic neurons, resulted in differential hydroxymethylation associated with genes involved in synaptic transmission. Functionally, overexpression of neuronal Tet2 impaired hippocampal-dependent memory, while loss of neuronal Tet2 enhanced memory. Ultimately, these data identify neuronal Tet2 as a molecular target to boost cognitive function.


Subject(s)
Dioxygenases , Proto-Oncogene Proteins , Animals , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , DNA-Binding Proteins/metabolism , 5-Methylcytosine/metabolism , Dioxygenases/genetics , DNA Methylation/genetics , Cognition , Neurons/metabolism , Hippocampus/metabolism
17.
Aging Cell ; 19(8): e13192, 2020 08.
Article in English | MEDLINE | ID: mdl-33073926

ABSTRACT

The aged systemic milieu promotes cellular and cognitive impairments in the hippocampus. Here, we report that aging of the hematopoietic system directly contributes to the pro-aging effects of old blood on cognition. Using a heterochronic hematopoietic stem cell (HSC) transplantation model (in which the blood of young mice is reconstituted with old HSCs), we find that exposure to an old hematopoietic system inhibits hippocampal neurogenesis, decreases synaptic marker expression, and impairs cognition. We identify a number of factors elevated in the blood of young mice reconstituted with old HSCs, of which cyclophilin A (CyPA) acts as a pro-aging factor. Increased systemic levels of CyPA impair cognition in young mice, while inhibition of CyPA in aged mice improves cognition. Together, these data identify age-related changes in the hematopoietic system as drivers of hippocampal aging.


Subject(s)
Aging , Cognitive Dysfunction , Hematopoietic Stem Cells , Hippocampus , Animals , Male , Mice , Aging/pathology , Cognitive Dysfunction/physiopathology , Hematopoietic Stem Cells/pathology , Hippocampus/physiopathology
18.
Science ; 369(6500): 167-173, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32646997

ABSTRACT

Reversing brain aging may be possible through systemic interventions such as exercise. We found that administration of circulating blood factors in plasma from exercised aged mice transferred the effects of exercise on adult neurogenesis and cognition to sedentary aged mice. Plasma concentrations of glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (Gpld1), a GPI-degrading enzyme derived from liver, were found to increase after exercise and to correlate with improved cognitive function in aged mice, and concentrations of Gpld1 in blood were increased in active, healthy elderly humans. Increasing systemic concentrations of Gpld1 in aged mice ameliorated age-related regenerative and cognitive impairments by altering signaling cascades downstream of GPI-anchored substrate cleavage. We thus identify a liver-to-brain axis by which blood factors can transfer the benefits of exercise in old age.


Subject(s)
Aging/blood , Brain/physiology , Cognition/physiology , Liver/enzymology , Neurogenesis , Phospholipase D/blood , Physical Conditioning, Animal , Animals , Blood Circulation , Brain/blood supply , Cognitive Dysfunction/blood , Cognitive Dysfunction/physiopathology , Glycosylphosphatidylinositols/metabolism , Mice , Phospholipase D/metabolism , Regeneration , Signal Transduction
19.
Curr Biol ; 29(20): 3359-3369.e4, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31588002

ABSTRACT

Mounting evidence in animal models indicates potential for rejuvenation of cellular and cognitive functions in the aging brain. However, the ability to utilize this potential is predicated on identifying molecular targets that reverse the effects of aging in vulnerable regions of the brain, such as the hippocampus. The dynamic post-translational modification O-linked N-Acetylglucosamine (O-GlcNAc) has emerged as an attractive target for regulating aging-specific synaptic alterations as well as neurodegeneration. While speculation exists about the role of O-GlcNAc in neurodegenerative conditions, such as Alzheimer's disease, its role in physiological brain aging remains largely unexplored. Here, we report that countering age-related decreased O-GlcNAc transferase (OGT) expression and O-GlcNAcylation ameliorates cognitive impairments in aged mice. Mimicking an aged condition in young adults by abrogating OGT, using a temporally controlled neuron-specific conditional knockout mouse model, recapitulated cellular and cognitive features of brain aging. Conversely, overexpressing OGT in mature hippocampal neurons using a viral-mediated approach enhanced associative fear memory in young adult mice. Excitingly, in aged mice overexpressing neuronal OGT in the aged hippocampus rescued in part age-related impairments in spatial learning and memory as well as associative fear memory. Our data identify O-GlcNAcylaton as a key molecular mediator promoting cognitive rejuvenation.


Subject(s)
Acetylglucosamine/metabolism , Aging/physiology , Cognition/physiology , N-Acetylglucosaminyltransferases/metabolism , Acylation , Animals , Male , Mice , Mice, Knockout
20.
Cell Rep ; 22(8): 1974-1981, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29466726

ABSTRACT

Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation.


Subject(s)
Aging/pathology , Brain/physiopathology , Cognition , DNA-Binding Proteins/metabolism , Nerve Regeneration , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Dioxygenases , Male , Mice, Inbred C57BL , Models, Animal , Neural Stem Cells/metabolism , Neurogenesis , Parabiosis
SELECTION OF CITATIONS
SEARCH DETAIL