ABSTRACT
Over the past decade, theranostic imaging has emerged as a powerful clinical tool in oncology for identifying patients likely to respond to targeted therapies and for monitoring the response of patients to treatment. Herein, we report a theranostic approach to pretargeted radioimmunotherapy (PRIT) based on a pair of radioisotopes of copper: positron-emitting copper-64 (64Cu, t1/2 = 12.7 h) and beta particle-emitting copper-67 (67Cu, t1/2 = 61.8 h). This strategy is predicated on the in vivo ligation between a trans-cyclooctene (TCO)-bearing antibody and a tetrazine (Tz)-based radioligand via the rapid and bioorthogonal inverse electron-demand Diels-Alder reaction. Longitudinal therapy studies were conducted in a murine model of human colorectal carcinoma using an immunoconjugate of the huA33 antibody modified with TCO (huA33-TCO) and a 67Cu-labeled Tz radioligand ([67Cu]Cu-MeCOSar-Tz). The injection of huA33-TCO followed 72 h later by the administration of 18.5, 37.0, or 55.5 MBq of [67Cu]Cu-MeCOSar-Tz produced a dose-dependent therapeutic response, with the median survival time increasing from 68 d for the lowest dose to >200 d for the highest. Furthermore, we observed that mice that received the highest dose of [67Cu]Cu-MeCOSar-Tz in a fractionated manner exhibited improved hematological values without sacrificing therapeutic efficacy. Dual radionuclide experiments in which a single administration of huA33-TCO was followed by separate injections of [64Cu]Cu-MeCOSar-Tz and [67Cu]Cu-MeCOSar-Tz revealed that the positron emission tomography images produced by the former accurately predicted the efficacy of the latter. In these experiments, a correlation was observed between the tumoral uptake of [64Cu]Cu-MeCOSar-Tz and the subsequent therapeutic response to [67Cu]Cu-MeCOSar-Tz.
Subject(s)
Copper Radioisotopes/pharmacology , Copper Radioisotopes/therapeutic use , Precision Medicine/methods , Radioimmunotherapy/methods , Animals , Antibodies , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Cycloaddition Reaction , Dose-Response Relationship, Drug , Female , Humans , Immunoconjugates , Mice , Mice, Nude , Positron-Emission Tomography/methods , Radioisotopes/pharmacology , Radioisotopes/therapeutic use , Xenograft Model Antitumor AssaysABSTRACT
Our aim was to report the use of 64Cu and 67Cu as a theranostic pair of radionuclides in human subjects. An additional aim was to measure whole-organ dosimetry of 64Cu and 67Cu attached to the somatostatin analog octreotate using the sarcophagine MeCOSar chelator (SARTATE) in subjects with somatostatin receptor-expressing lesions confined to the cranium, thereby permitting normal-organ dosimetry for the remainder of the body. Methods: Pretreatment PET imaging studies were performed up to 24 h after injection of [64Cu]Cu-SARTATE, and normal-organ dosimetry was estimated using OLINDA/EXM. Subsequently, the trial subjects with multifocal meningiomas were given therapeutic doses of [67Cu]Cu-SARTATE and imaged over several days using SPECT/CT. Results: Five subjects were initially recruited and imaged using PET/CT before treatment. Three of the subjects were subsequently administered 4 cycles each of [67Cu]Cu-SARTATE followed by multiple SPECT/CT imaging time points. No serious adverse events were observed, and no adverse events led to withdrawal from the study or discontinuation from treatment. The estimated mean effective dose was 3.95 × 10-2 mSv/MBq for [64Cu]Cu-SARTATE and 7.62 × 10-2 mSv/MBq for [67Cu]Cu-SARTATE. The highest estimated organ dose was in spleen, followed by kidneys, liver, adrenals, and small intestine. The matched pairing was shown by PET and SPECT intrasubject imaging to have nearly identical targeting to tumors for guiding therapy, demonstrating a potentially accurate and precise theranostic product. Conclusion: 64Cu and 67Cu show great promise as a theranostic pair of radionuclides. Further clinical studies will be required to examine the therapeutic dose required for [67Cu]Cu-SARTATE for various indications. In addition, the ability to use predictive 64Cu-based dosimetry for treatment planning with 67Cu should be further explored.
Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/radiotherapy , Positron Emission Tomography Computed Tomography/methods , Radioisotopes , Radiometry , Radiopharmaceuticals/therapeutic use , Tissue DistributionABSTRACT
The majority of patients with late stage castration-resistant prostate cancer (CRPC) develop bone metastases that often result in significant bone pain. Therapeutic palliation strategies can delay or prevent skeletal complications and may prolong survival. An alpha-particle based therapy, radium-223 dichloride (²²³RaCl2), has been developed that delivers highly localized effects in target areas and likely reduces toxicity to adjacent healthy tissue, particularly bone marrow. Radiation safety aspects were evaluated for a single comprehensive cancer center clinical phase 1, open-label, single ascending-dose study for three cohorts at 50, 100, or 200 kBq kg⻹ body weight. Ten patients received administrations, and six patients completed the study with 1 y follow-up. Dose rates from patients administered ²²³Ra dichloride were typically less than 2 µSv h⻹ MBq⻹ on contact and averaged 0.02 µSv h⻹ MBq⻹ at 1 m immediately following administration. Removal was primarily by fecal excretion, and whole body effective half-lives were highly dependent upon fecal compartment transfer, ranging from 2.5-11.4 d. Radium-223 is safe and straightforward to administer using conventional nuclear medicine equipment. For this clinical study, few radiation protection limitations were recommended post-therapy based on facility evaluations. Specific precautions are dependent on local regulatory authority guidance. Subsequent studies have demonstrated significantly improved overall survival and very low toxicity, suggesting that ²²³Ra may provide a new standard of care for patients with CRPC and bone metastases.
Subject(s)
Antineoplastic Agents/therapeutic use , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiation Protection/methods , Radiopharmaceuticals/therapeutic use , Radium/therapeutic use , Aged , Aged, 80 and over , Alpha Particles , Antineoplastic Agents/adverse effects , Body Weight , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Bone and Bones/pathology , Chlorides/chemistry , Dose-Response Relationship, Radiation , Humans , Male , Middle Aged , Neoplasm Metastasis , Radioisotopes/adverse effects , Radioisotopes/therapeutic use , Radiopharmaceuticals/adverse effects , Radium/adverse effects , Time Factors , Treatment OutcomeABSTRACT
A novel method has been developed for determining the natural decay series radionuclides (NDS), 210Pb, 210Bi, and 210Po, in seawater by way of state-of-the-art liquid scintillation spectrometry. For 210Pb analysis, the method makes use of a 212Pb yield tracer, prepared by ion exchange separation from aged Th(NO3)4. 210Bi recovery is determined using 207Bi as the yield tracer, and 210Po is determined using the conventional 208Po yield tracer. The limits of detection for this method are 0.32, 0.34, and 0.004 mBq 1-1 for 210Pb, 210Bi, and 210Po, respectively. The analysis can be completed within 10 days, as compared with up to one year for traditional methods. Results are presented for a preliminary study of 210Pb, 210Bi, and 210Po in the dissolved and particle-bound phases of Irish Sea water.