Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmacol Res ; 169: 105616, 2021 07.
Article in English | MEDLINE | ID: mdl-33872809

ABSTRACT

Targeted therapy has become increasingly important and indispensable in cancer therapy. Cullin3-RING ligases (CRL3) serve as essential executors for regulating protein homeostasis in cancer development, highlighting that CRL3 might be promising targets in various cancer treatment. However, how to design new targeted therapies by disrupting the function of CRL3 is poorly understood. Here, we focus on the substrate adaptors of CRL3, and carry out a systematical research on the function of Kelch-like (KLHL) family proteins. We have identified twenty-four KLHL proteins with function of tumor promotion and thirteen KLHL proteins with high clinical significance on cancer therapy. Furthermore, we have clarified the novel biological function of KLHL13 as a vital factor that contributes to malignant progression in lung cancer. Taken together, our findings reveal multiple potential therapeutical targets and provide evidence for targeting CRL3 via KLHL substrate adaptors for cancer therapy.


Subject(s)
Cullin Proteins/metabolism , Kelch Repeat , Molecular Targeted Therapy/methods , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism
2.
J Med Chem ; 66(19): 13530-13555, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37749892

ABSTRACT

Patients with high-risk neuroblastoma face limited treatment choices, typically involving a combination of cytotoxic and differentiation maintenance therapies due to a scarcity of drugs. Evidence suggests that targeted inhibitors may provide opportunities for inducing neuroblastoma differentiation while inhibiting proliferation. Here, we demonstrate the synergistic effect of inhibiting Akt and ROCK in antineuroblastoma and present the design and discovery of a new Akt/ROCK inhibitor, B12. It displays strong antiproliferative effects and excellent differentiation inducing activity against Neuro2a cells. Treatment with B12 results in the arrest of G0/G1 cell cycles, a significant decrease in N-myc protein level, and an increase in differentiation markers. The administration of B12 effectively suppresses xenograft tumor growth and promotes differentiation. Overall, the discovery of B12 based on the Akt/ROCK dual inhibition strategy may provide hope for the development of more effective and targeted therapies for this challenging disease.

3.
Acta Pharm Sin B ; 13(4): 1522-1536, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139432

ABSTRACT

While neuroblastoma accounts for 15% of childhood tumor-related deaths, treatments against neuroblastoma remain scarce and mainly consist of cytotoxic chemotherapeutic drugs. Currently, maintenance therapy of differentiation induction is the standard of care for neuroblastoma patients in clinical, especially high-risk patients. However, differentiation therapy is not used as a first-line treatment for neuroblastoma due to low efficacy, unclear mechanism, and few drug options. Through compound library screening, we accidently found the potential differentiation-inducing effect of AKT inhibitor Hu7691. The protein kinase B (AKT) pathway is an important signaling pathway for regulating tumorigenesis and neural differentiation, yet the relation between the AKT pathway and neuroblastoma differentiation remains unclear. Here, we reveal the anti-proliferation and neurogenesis effect of Hu7691 on multiple neuroblastoma cell lines. Further evidence including neurites outgrowth, cell cycle arrest, and differentiation mRNA marker clarified the differentiation-inducing effect of Hu7691. Meanwhile, with the introduction of other AKT inhibitors, it is now clear that multiple AKT inhibitors can induce neuroblastoma differentiation. Furthermore, silencing AKT was found to have the effect of inducing neuroblastoma differentiation. Finally, confirmation of the therapeutic effects of Hu7691 is dependent on inducing differentiation in vivo, suggesting that Hu7691 is a potential molecule against neuroblastoma. Through this study, we not only define the key role of AKT in the progression of neuroblastoma differentiation but also provide potential drugs and key targets for the application of differentiation therapies for neuroblastoma clinically.

4.
Acta Pharm Sin B ; 12(4): 1856-1870, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35847510

ABSTRACT

In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.

SELECTION OF CITATIONS
SEARCH DETAIL