Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nat Immunol ; 20(4): 482-492, 2019 04.
Article in English | MEDLINE | ID: mdl-30833793

ABSTRACT

Gut-derived antigens trigger immunoglobulin A (IgA) immune responses that are initiated by cognate B cells in Peyer's patches (PPs). These cells colonize the subepithelial domes (SEDs) of the PPs and subsequently infiltrate pre-existing germinal centers (GCs). Here we defined the pre-GC events and the micro-anatomical site at which affinity-based B cell selection occurred in PPs. Using whole-organ imaging, we showed that the affinity of the B cell antigen receptor (BCR) regulated the infiltration of antigen-specific B cells into GCs but not clonal competition in the SED. Follicular helper-like T cells resided in the SED and promoted its B cell colonization, independently of the magnitude of BCR affinity. Imaging and immunoglobulin sequencing indicated that selective clonal expansion ensued during infiltration into GCs. Thus, in contrast to the events in draining lymph nodes and spleen, in PPs, T cells promoted mainly the population expansion of B cells without clonal selection during pre-GC events. These findings have major implications for the design of oral vaccines.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Peyer's Patches/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Clonal Selection, Antigen-Mediated , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology
2.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35182483

ABSTRACT

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Subject(s)
Bacterial Infections , Listeriosis , B-Lymphocytes , Germinal Center , Humans , Monocytes
3.
Nature ; 632(8025): 637-646, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085603

ABSTRACT

Nasal vaccination elicits a humoral immune response that provides protection from airborne pathogens1, yet the origins and specific immune niches of antigen-specific IgA-secreting cells in the upper airways are unclear2. Here we define nasal glandular acinar structures and the turbinates as immunological niches that recruit IgA-secreting plasma cells from the nasal-associated lymphoid tissues (NALTs)3. Using intact organ imaging, we demonstrate that nasal vaccination induces B cell expansion in the subepithelial dome of the NALT, followed by invasion into commensal-bacteria-driven chronic germinal centres in a T cell-dependent manner. Initiation of the germinal centre response in the NALT requires pre-expansion of antigen-specific T cells, which interact with cognate B cells in interfollicular regions. NALT ablation and blockade of PSGL-1, which mediates interactions with endothelial cell selectins, demonstrated that NALT-derived IgA-expressing B cells home to the turbinate region through the circulation, where they are positioned primarily around glandular acinar structures. CCL28 expression was increased in the turbinates in response to vaccination and promoted homing of IgA+ B cells to this site. Thus, in response to nasal vaccination, the glandular acini and turbinates provide immunological niches that host NALT-derived IgA-secreting cells. These cellular events could be manipulated in vaccine design or in the treatment of upper airway allergic responses.


Subject(s)
Immunoglobulin A , Lymphoid Tissue , Nasal Mucosa , Plasma Cells , T-Lymphocytes , Turbinates , Animals , Female , Male , Mice , Bacteria/immunology , Cell Movement , Chemokines, CC/immunology , Chemokines, CC/metabolism , Germinal Center/immunology , Germinal Center/cytology , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/cytology , Mice, Inbred C57BL , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Plasma Cells/immunology , Plasma Cells/cytology , Plasma Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Turbinates/cytology , Turbinates/immunology , Vaccination , Administration, Intranasal , Vaccines/immunology , Symbiosis
4.
Immunol Rev ; 296(1): 36-47, 2020 07.
Article in English | MEDLINE | ID: mdl-32557712

ABSTRACT

Enduring immunity against harmful pathogens depends on the generation of immunological memory. Serum immunoglobulins are constantly secreted by long-lived antibody-producing cells, which provide extended protection from recurrent exposures. These cells originate mainly from germinal center structures, wherein B cells introduce mutations to their immunoglobulin genes followed by affinity-based selection. Generation of high-affinity antibodies relies on physical contacts between T and B cells, a process that facilitates the delivery of fate decision signals. T-B cellular engagements are mediated through interactions between the T cell receptor and its cognate peptide presented on B cell major histocompatibility class II molecules. Here, we describe the cellular and molecular aspects of these cognate T-B interactions, and highlight exceptional cases, especially those arising at intestinal lymphoid organs, at which T cells provide help to B cells in an atypical manner, independent of T cell specificity.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Communication/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Antibody Affinity/immunology , Antibody Formation/immunology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunity, Cellular , Immunity, Humoral , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Peyer's Patches/immunology , Peyer's Patches/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
5.
Immunol Rev ; 288(1): 37-48, 2019 03.
Article in English | MEDLINE | ID: mdl-30874355

ABSTRACT

Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Models, Immunological , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens/immunology , Cell Differentiation , Humans , Immunity, Humoral , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism
6.
Sci Immunol ; 9(93): eadj7363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38427721

ABSTRACT

Peyer's patches (PPs) are lymphoid structures situated adjacent to the intestinal epithelium that support B cell responses that give rise to many intestinal IgA-secreting cells. Induction of isotype switching to IgA in PPs requires interactions between B cells and TGFß-activating conventional dendritic cells type 2 (cDC2s) in the subepithelial dome (SED). However, the mechanisms promoting cDC2 positioning in the SED are unclear. Here, we found that PP cDC2s express GPR35, a receptor that promotes cell migration in response to various metabolites, including 5-hydroxyindoleacetic acid (5-HIAA). In mice lacking GPR35, fewer cDC2s were found in the SED, and frequencies of IgA+ germinal center (GC) B cells were reduced. IgA plasma cells were reduced in both the PPs and lamina propria. These phenotypes were also observed in chimeric mice that lacked GPR35 selectively in cDCs. GPR35 deficiency led to reduced coating of commensal bacteria with IgA and reduced IgA responses to cholera toxin. Mast cells were present in the SED, and mast cell-deficient mice had reduced PP cDC2s and IgA+ cells. Ablation of tryptophan hydroxylase 1 (Tph1) in mast cells to prevent their production of 5-HIAA similarly led to reduced PP cDC2s and IgA responses. Thus, mast cell-guided positioning of GPR35+ cDC2s in the PP SED supports induction of intestinal IgA responses.


Subject(s)
B-Lymphocytes , Mast Cells , Animals , Mice , Hydroxyindoleacetic Acid , Cell Movement , Immunoglobulin A, Secretory , Peyer's Patches , Receptors, G-Protein-Coupled/genetics
7.
Sci Immunol ; 9(93): eadj7124, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552029

ABSTRACT

Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.


Subject(s)
B-Lymphocytes , T-Lymphocytes , Germinal Center , Receptors, Antigen, B-Cell/metabolism , RNA, Messenger/metabolism
8.
Science ; 384(6694): 428-437, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662827

ABSTRACT

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Subject(s)
Bacteroides fragilis , Gastrointestinal Microbiome , Immune Checkpoint Inhibitors , Neoplasms , Vitamin D , Animals , Female , Humans , Male , Mice , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/microbiology , Neoplasms/therapy , Vitamin D/administration & dosage , Vitamin D/metabolism , Diet , Cell Line, Tumor , Calcifediol/administration & dosage , Calcifediol/metabolism , Vitamin D-Binding Protein/genetics , Vitamin D-Binding Protein/metabolism
9.
Front Immunol ; 14: 1199064, 2023.
Article in English | MEDLINE | ID: mdl-37325645

ABSTRACT

The T cell receptor is generated by a process of random and imprecise somatic recombination. The number of possible T cell receptors which this process can produce is enormous, greatly exceeding the number of T cells in an individual. Thus, the likelihood of identical TCRs being observed in multiple individuals (public TCRs) might be expected to be very low. Nevertheless such public TCRs have often been reported. In this study we explore the extent of TCR publicity in the context of acute resolving Lymphocytic choriomeningitis virus (LCMV) infection in mice. We show that the repertoire of effector T cells following LCMV infection contains a population of highly shared TCR sequences. This subset of TCRs has a distribution of naive precursor frequencies, generation probabilities, and physico-chemical CDR3 properties which lie between those of classic public TCRs, which are observed in uninfected repertoires, and the dominant private TCR repertoire. We have named this set of sequences "hidden public" TCRs, since they are only revealed following infection. A similar repertoire of hidden public TCRs can be observed in humans after a first exposure to SARS-COV-2. The presence of hidden public TCRs which rapidly expand following viral infection may therefore be a general feature of adaptive immunity, identifying an additional level of inter-individual sharing in the TCR repertoire which may form an important component of the effector and memory response.


Subject(s)
COVID-19 , Lymphocytic Choriomeningitis , Humans , Mice , Animals , SARS-CoV-2 , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
10.
Nat Metab ; 5(11): 1858-1869, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857731

ABSTRACT

The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.


Subject(s)
Colitis , Male , Mice , Animals , Colitis/chemically induced , Intestinal Mucosa , Epithelial Cells
11.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34402854

ABSTRACT

Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.


Subject(s)
Germinal Center/physiology , Methyltransferases/metabolism , RNA/metabolism , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Animals , B-Lymphocytes/pathology , Cell Cycle/genetics , Gene Expression Regulation , Genes, myc , Germinal Center/pathology , Methylation , Methyltransferases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Phosphorylation , RNA/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Smegmamorpha , Spleen/pathology
12.
Bio Protoc ; 10(6): e3562, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-33659533

ABSTRACT

T follicular helper (Tfh) cells regulate B cell selection for entry into the germinal center (GC) reaction or for differentiation into antibody forming cells. This process takes place at the border between the T and B zones in lymphoid organs and involves physical contacts between T and B cells. During these interactions, T cells endow the B cells with selection signals that promote GC seeding or plasmablast differentiation based on their B cell receptor affinity. In Peyer's patches (PPs), T cells promote B cell colonization of the subepithelial dome (SED) without effective affinity-based clonal selection. To specifically characterize the T cell population that resides within the SED niche, we performed ex vivo photoactivation of the SED compartment followed by flow cytometry analysis of the labeled cells, as described in this protocol. This technique integrates both spatial and cellular information in studies of immunological niches and can be adapted to various experimental systems.

13.
Bio Protoc ; 10(9): e3602, 2020 May 05.
Article in English | MEDLINE | ID: mdl-33659568

ABSTRACT

Generation of antibodies is crucial for establishing enduring protection from invading pathogens, as well as for maintaining homeostasis with commensal bacteria at mucosal surfaces. Chronic exposure to microbiota- and dietary- derived antigens results in continuous production of antibody producing cells within the Peyer's patch germinal center structures. Recently, we have shown that B cells responding to gut-derived antigens colonize the subepithelial dome (SED) in Peyer's patches and rapidly proliferate independently of their relative BCR affinity. To evaluate B cell proliferation within different niches in Peyer's patches, we applied in vivo EdU incorporation assay as described in this protocol.

14.
J Exp Med ; 217(3)2020 03 02.
Article in English | MEDLINE | ID: mdl-31873727

ABSTRACT

Germinal centers (GCs) are sites at which B cells proliferate and mutate their antibody-encoding genes in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). B cell antigen receptor (BCR) signals induce Syk activation followed by rapid phosphatase-mediated desensitization; however, how degradation events regulate BCR functions in GCs is unclear. Here, we found that Syk degradation restrains plasma cell (PC) formation in GCs and promotes B cell LZ to DZ transition. Using a mouse model defective in Cbl-mediated Syk degradation, we demonstrate that this machinery attenuates BCR signaling intensity by mitigating the Kras/Erk and PI3K/Foxo1 pathways, and restricting the expression of PC transcription factors in GC B cells. Inhibition of Syk degradation perturbed gene expression, specifically in the LZ, and enhanced the generation of PCs without affecting B cell proliferation. These findings reveal how long-lasting attenuation of signal transduction by degradation events regulates cell fate within specialized microanatomical sites.


Subject(s)
Germinal Center/metabolism , Plasma Cells/metabolism , Syk Kinase/metabolism , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/physiology , Cell Proliferation/physiology , Gene Expression/physiology , Germinal Center/physiology , Lymphocyte Activation/physiology , Mice , Mice, Inbred C57BL , Plasma Cells/physiology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/physiology
15.
Cell Rep ; 30(6): 1910-1922.e5, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049020

ABSTRACT

Antibodies secreted within the intestinal tract provide protection from the invasion of microbes into the host tissues. Germinal center (GC) formation in lymph nodes and spleen strictly requires SLAM-associated protein (SAP)-mediated T cell functions; however, it is not known whether this mechanism plays a similar role in mucosal-associated lymphoid tissues. Here, we find that in Peyer's patches (PPs), SAP-mediated T cell help is required for promoting B cell selection in GCs, but not for clonal diversification. PPs of SAP-deficient mice host chronic GCs that are absent in T cell-deficient mice. GC B cells in SAP-deficient mice express AID and Bcl6 and generate plasma cells in proportion to the GC size. Single-cell IgA sequencing analysis reveals that these mice host few diversified clones that were subjected to mild selection forces. These findings demonstrate that T cell-derived help to B cells in PPs includes SAP-dependent and SAP-independent functions.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Peyer's Patches/immunology , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , Animals , Mice
16.
Nat Commun ; 11(1): 3547, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669546

ABSTRACT

Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.


Subject(s)
Bone Marrow Cells/immunology , Lactic Acid/metabolism , Neutrophils/immunology , Receptors, G-Protein-Coupled/metabolism , Salmonella Infections/immunology , Animals , Bone Marrow/blood supply , Bone Marrow Cells/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Female , Humans , Lipopolysaccharides/immunology , Male , Mice , Mice, Knockout , Neutrophils/metabolism , Receptors, G-Protein-Coupled/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/immunology , Signal Transduction/immunology
17.
J Exp Med ; 216(11): 2515-2530, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31492809

ABSTRACT

Germinal centers (GCs) are sites wherein B cells proliferate and mutate their immunoglobulins in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). Here, we mapped the location of single B cells in the context of intact lymph nodes (LNs) throughout the GC response, and examined the role of BCR affinity in dictating their position. Imaging of entire GC structures and proximal single cells by light-sheet fluorescence microscopy revealed that individual B cells that previously expressed AID are located within the LN cortex, in an area close to the GC LZ. Using in situ photoactivation, we demonstrated that B cells migrate from the LZ toward the GC outskirts, while DZ B cells are confined to the GC. B cells expressing very-low-affinity BCRs formed GCs but were unable to efficiently disperse within the follicles. Our findings reveal that BCR affinity regulates B cell positioning during the GC response.


Subject(s)
B-Lymphocytes/metabolism , Cell Proliferation , Germinal Center/metabolism , Lymph Nodes/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , B-Lymphocytes/cytology , Cell Movement , Germinal Center/cytology , Lymph Nodes/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Fluorescence
18.
Nat Commun ; 10(1): 2423, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160559

ABSTRACT

The germinal center (GC) reaction in Peyer's patches (PP) requires continuous access to antigens, but how this is achieved is not known. Here we show that activated antigen-specific CCR6+CCR1+GL7- B cells make close contact with M cells in the subepithelial dome (SED). Using in situ photoactivation analysis of antigen-specific SED B cells, we find migration of cells towards the GC. Following antigen injection into ligated intestinal loops containing PPs, 40% of antigen-specific SED B cells bind antigen within 2 h, whereas unspecifc cells do not, indicating B cell-receptor involvment. Antigen-loading is not observed in M cell-deficient mice, but is unperturbed in mice depleted of classical dendritic cells (DC). Thus, we report a M cell-B cell antigen-specific transporting pathway in PP that is independent of DC. We propose that this antigen transporting pathway has a critical role in gut IgA responses, and should be taken into account when developing mucosal vaccines.


Subject(s)
Antigen-Presenting Cells/immunology , Antigens/immunology , B-Lymphocytes/immunology , Epithelial Cells/immunology , Peyer's Patches/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Dendritic Cells/immunology , Germinal Center/immunology , Immunoglobulin A/immunology , Lymphocyte Activation , Mice
19.
Cell Rep ; 22(4): 849-859, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29420172

ABSTRACT

Protective immune responses depend on the formation of immune synapses between T cells and antigen-presenting cells (APCs). The two main LFA-1 ligands, ICAM-1 and ICAM-2, are co-expressed on many cell types, including APCs and blood vessels. Although these molecules were suggested to be key players in immune synapses studied in vitro, their contribution to helper T cell priming in vivo is unclear. Here, we used transgenic mice and intravital imaging to examine the role of dendritic cell (DC) ICAM-1 and ICAM-2 in naive CD4 T cell priming and differentiation in skin-draining lymph nodes. Surprisingly, ICAM deficiency on endogenous CD40-stimulated lymph node DCs did not impair their ability to arrest and prime CD4 lymphocyte activation and differentiation into Th1 and Tfh effectors. Thus, functional T cell receptor (TCR)-specific helper T cell synapses with antigen-presenting DCs and subsequent proliferation and early differentiation into T effectors do not require LFA-1-mediated T cell adhesiveness to DC ICAMs.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Intercellular Adhesion Molecule-1/genetics , Lymph Nodes/immunology , Humans
20.
Elife ; 72018 11 07.
Article in English | MEDLINE | ID: mdl-30403374

ABSTRACT

Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here, we utilized the nematode Caenorhabditis elegans to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor glp-1. Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Proteostasis , Signal Transduction , Sumoylation , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Knockdown Techniques , Germ Cells/metabolism , Gonads/metabolism , Longevity , Models, Biological , Stress, Physiological , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL