Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 23(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269778

ABSTRACT

As in women with polycystic ovary syndrome (PCOS), hyperinsulinemia is associated with anovulation in PCOS-like female rhesus monkeys. Insulin sensitizers ameliorate hyperinsulinemia and stimulate ovulatory menstrual cycles in PCOS-like monkeys. To determine whether hyperinsulinemia (>694 pmol/L), alone, induces PCOS-like traits, five PCOS-like female rhesus monkeys with minimal PCOS-like traits, and four control females of similar mid-to-late reproductive years and body mass index, received daily subcutaneous injections of recombinant human insulin or diluent for 6−7 months. A cross-over experimental design enabled use of the same monkeys in each treatment phase. Insulin treatment unexpectedly normalized follicular phase duration in PCOS-like, but not control, females. In response to an intramuscular injection of 200 IU hCG, neither prenatally androgenized nor control females demonstrated ovarian hyperandrogenic responses while receiving insulin. An intravenous GnRH (100 ng/kg) injection also did not reveal evidence of hypergonadotropism. Taken together, these results suggest that experimentally induced adult hyperinsulinemia, alone, is insufficient to induce PCOS-like traits in female rhesus monkeys and to amplify intrinsic PCOS-like pathophysiology.


Subject(s)
Hyperandrogenism , Hyperinsulinism , Polycystic Ovary Syndrome , Animals , Female , Humans , Hyperinsulinism/chemically induced , Insulin , Macaca mulatta , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy
2.
Development ; 145(1)2018 01 08.
Article in English | MEDLINE | ID: mdl-29180569

ABSTRACT

Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells.


Subject(s)
Achondroplasia , Alleles , Bone Development/genetics , Cartilage , Phenotype , Achondroplasia/genetics , Achondroplasia/metabolism , Achondroplasia/pathology , Animals , Biological Transport, Active/genetics , Cartilage/abnormalities , Cartilage/metabolism , Cartilage/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Cytoskeletal Proteins , Mice , Mice, Knockout , Nuclear Proteins/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/metabolism , Osteoclasts/pathology
3.
J Magn Reson Imaging ; 51(2): 580-592, 2020 02.
Article in English | MEDLINE | ID: mdl-31276263

ABSTRACT

BACKGROUND: 3D chemical shift-encoded (CSE)-MRI techniques enable assessment of ferumoxytol concentration but are unreliable in the presence of motion. PURPOSE: To evaluate a motion-robust 2D-sequential CSE-MRI for R2* and B0 mapping in ferumoxytol-enhanced MRI of the placenta. STUDY TYPE: Prospective. ANIMAL MODEL: Pregnant rhesus macaques. FIELD STRENGTH/SEQUENCE: 3.0T/CSE-MRI. ASSESSMENT: 2D-sequential CSE-MRI was compared with 3D respiratory-gated CSE-MRI in placental imaging of 11 anesthetized animals at multiple timepoints before and after ferumoxytol administration, and in ferumoxytol phantoms (0 µg/mL-440 µg/mL). Motion artifacts of CSE-MRI in 10 pregnant women without ferumoxytol administration were assessed retrospectively by three blinded readers (4-point Likert scale). The repeatability of CSE-MRI in seven pregnant women was also prospectively studied. STATISTICAL TESTS: Placental R2* and boundary B0 field measurements (ΔB0) were compared between 2D-sequential and 3D respiratory-gated CSE-MRI using linear regression and Bland-Altman analysis. RESULTS: In phantoms, a slope of 0.94 (r2 = 0.99, concordance correlation coefficient ρ = 0.99), and bias of -4.8 s-1 (limit of agreement [LOA], -41.4 s-1 , +31.8 s-1 ) in R2*, and a slope of 1.07 (r2 = 1.00, ρ = 0.99) and bias of 11.4 Hz (LOA -12.0 Hz, +34.8 Hz) in ΔB0 were obtained in 2D CSE-MRI compared with 3D CSE-MRI for reference R2* ≤390 s-1 . In animals, a slope of 0.92 (r2 = 0.97, ρ = 0.98) and bias of -2.2 s-1 (LOA -55.6 s-1 , +51.3 s-1 ) in R2*, and a slope of 1.05 (r2 = 0.95, ρ = 0.97) and bias of 0.4 Hz (LOA -9.0 Hz, +9.7 Hz) in ΔB0 were obtained. In humans, motion-impaired R2* maps in 3D CSE-MRI (Reader 1: 1.8 ± 0.6, Reader 2: 1.3 ± 0.7, Reader 3: 1.9 ± 0.6), while 2D CSE-MRI was motion-free (Reader 1: 2.9 ± 0.3, Reader 2: 3.0 ± 0, Reader 3: 3.0 ± 0). A mean difference of 0.66 s-1 and coefficient of repeatability of 9.48 s-1 for placental R2* were observed in the repeated 2D CSE-MRI. DATA CONCLUSION: 2D-sequential CSE-MRI provides accurate R2* and B0 measurements in ferumoxytol-enhanced placental MRI of animals in the presence of respiratory motion, and motion-robustness in human placental imaging. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:580-592.


Subject(s)
Ferrosoferric Oxide , Magnetic Resonance Imaging , Animals , Female , Humans , Macaca mulatta , Placenta/diagnostic imaging , Pregnancy , Prospective Studies , Reproducibility of Results , Retrospective Studies
4.
J Cell Physiol ; 234(7): 10184-10195, 2019 07.
Article in English | MEDLINE | ID: mdl-30387149

ABSTRACT

During pregnancy, a tremendous increase in fetoplacental angiogenesis is associated with elevated blood flow. Aberrant fetoplacental vascular function may lead to pregnancy complications including pre-eclampsia. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental endothelial function. G protein α subunit 14 (GNA14), a member of Gαq/11 subfamily is involved in mediating hypertensive diseases and tumor vascularization. However, little is known about roles of GNA14 in mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using human umbilical vein endothelial cells (HUVECs) cultured under physiological chronic low oxygen (3% O2 ) as a cell model, we show that transfecting cells with adenovirus carrying GNA14 complementary DNA (cDNA; Ad-GNA14) increases (p < 0.05) protein expression of GNA14. GNA14 overexpression blocks (p < 0.05) FGF2-stimulated endothelial migration, whereas it enhances (p < 0.05) endothelial monolayer integrity (maximum increase of ~35% over the control at 24 hr) in response to FGF2. In contrast, GNA14 overexpression does not significantly alter VEGFA-stimulated cell migration, VEGFA-weakened cell monolayer integrity, and intracellular Ca++ mobilization in response to adenosine triphosphate (ATP), FGF2, and VEGFA. GNA14 overexpression does not alter either FGF2- or VEGFA-induced phosphorylation of ERK1/2. However, GNA14 overexpression time-dependently elevates (p < 0.05) phosphorylation of phospholipase C-ß3 (PLCß3) at S1105 in response to FGF2, but not VEGFA. These data suggest that GNA14 distinctively mediates fetoplacental endothelial cell migration and permeability in response to FGF2 and VEGFA, possibly in part by altering activation of PLCß3 under physiological chronic low oxygen.


Subject(s)
Fibroblast Growth Factor 2/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Placenta/blood supply , Capillary Permeability/physiology , Cell Movement/physiology , Cells, Cultured , Female , Humans , Pregnancy
5.
Magn Reson Med ; 81(3): 1964-1978, 2019 03.
Article in English | MEDLINE | ID: mdl-30357902

ABSTRACT

PURPOSE: To investigate the correspondence between arterial spin labeling (ASL) flow-sensitive alternating inversion recovery (FAIR) and ferumoxytol DCE MRI for the assessment of placental intervillous perfusion. METHODS: Ten pregnant macaques in late second trimester were imaged at 3 T using a 2D ASL FAIR, with and without outer-volume saturation pulses used to control the bolus width, and a 3D ferumoxytol DCE-MRI acquisition. The ASL tagged/control pairs were averaged, subtracted, and normalized to create perfusion ratio maps. Contrast arrival time and uptake slope were estimated by fitting the DCE data to a sigmoid function. Macaques (N = 4) received interleukin-1ß to induce inflammation and disrupt perfusion. RESULTS: The FAIR tag modification with outer-volume saturation reduced the median ASL ratio percentage compared with conventional FAIR (0.64% ± 1.42% versus 0.71% ± 2.00%; P < .05). Extended ferumoxytol arrival times (34 ± 25 seconds) were observed across the placenta. No significant DCE signal change was measured in fetal tissue ( - 0.6% ± 3.0%; P = .52) or amniotic fluid (1.9% ± 8.8%; P = .59). High ASL ratio was significantly correlated with early arrival time and high uptake slope (P < .05), but ASL signal was not above noise in late-DCE-enhancing regions. No significant differences were observed in perfusion measurements between the interleukin-1ß and controls (P > .05). CONCLUSION: The ASL-FAIR and ferumoxytol DCE-MRI methods are feasible to detect early blood delivery to the macaque placenta. Outer volume saturation reduced the high macrovascular ASL signal. Interleukin-1ß exposure did not alter placental intervillous perfusion. An endogenous-labeling perfusion technique is limited due to extended transit times for flow within the placenta beyond the immediate vicinity of the maternal spiral arteries.


Subject(s)
Arteries/diagnostic imaging , Ferrosoferric Oxide/analysis , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Placenta/pathology , Animals , Contrast Media , Female , Image Processing, Computer-Assisted , Inflammation , Interleukin-1beta/metabolism , Macaca mulatta , Magnetic Resonance Angiography , Perfusion , Pregnancy , Pregnancy, Animal , Spin Labels
6.
Am J Physiol Renal Physiol ; 312(3): F445-F455, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27927648

ABSTRACT

Using a transgenic cross, we evaluated features of preeclampsia, renal injury and the sFlt1/VEGF changes. Transgenic hAGT and hREN, or wild-type (WT) C57Bl/6 mice were cross-bred: female hAGT × male hREN for preeclampsia (PRE) model and female WT × male WT for pregnant controls (WTP). Samples were collected for plasma VEGF, sFlt1, and urine albumin. Blood pressures (BP) were monitored by telemetry. Vascular reactivity was investigated by wire myography. Kidneys and placenta were immunostained for sFlt1 and VEGF. Eleven PRE and 9 WTP mice were compared. PRE more frequently demonstrated albuminuria, glomerular endotheliosis (80% vs. 11%; P = 0.02), and placental necrosis (60% vs. 0%; P < 0.01). PRE group demonstrated declining BPs with advancing gestation. Plasma sFlt1 increased across pregnancy in PRE; VEGF did not vary. IHC demonstrated the presence of sFlt1 in glomeruli, lymphatics, and collecting tubules of PRE kidneys, suggesting excretion. VEGF immunostaining was increased specifically in the glomeruli of PRE kidneys. Placenta in PRE showed marked immunostaining for sFlt1. We conclude that this transgenic model of preeclampsia recapitulates human preeclamptic state with high fidelity, and that, vascular adaptation to pregnancy is suggested by declining BPs and reduced vascular response to PE and increased response to acetylcholine. Placental damage with resultant increased release of sFlt1, proteinuria, deficient spiral artery remodeling, and glomerular endotheliosis were observed in this model of PRE. Increased VEGF binding to glomerular endothelial cells in this model of PRE is similar to human PRE and leads us to hypothesize that renal injury in preeclampsia may be mediated through local VEGF.


Subject(s)
Angiotensinogen/metabolism , Blood Pressure , Endothelial Cells/metabolism , Kidney Diseases/metabolism , Kidney Glomerulus/blood supply , Placenta/blood supply , Pre-Eclampsia/metabolism , Renin-Angiotensin System , Renin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Albuminuria/genetics , Albuminuria/metabolism , Albuminuria/physiopathology , Angiotensinogen/genetics , Animals , Disease Models, Animal , Endothelial Cells/pathology , Female , Genetic Predisposition to Disease , Gestational Age , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pre-Eclampsia/physiopathology , Pregnancy , Renin/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor Receptor-1/blood , Vascular Remodeling , Vasoconstriction , Vasodilation
7.
Am J Physiol Heart Circ Physiol ; 312(1): H173-H181, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27836897

ABSTRACT

The role increased vascular endothelial growth factor (VEGF) plays in vascular function during normal vs. preeclamptic pregnancy has been a source of some controversy of late. In this study, we seek to understand how VEGF165 influences vasodilator production via Ca2+ signaling mechanisms in human endothelial cells. We utilize human umbilical vein endothelial cells (HUVEC) as well as intact ex vivo human umbilical vein (HUV Endo) to address direct stimulation of Ca2+ and NO by VEGF165 alone, as well as the effect of VEGF165 on subsequent ATP-stimulated Ca2+ signaling and NO production. We show that VEGF165 stimulates Ca2+ responses in both HUVEC and HUV Endo, which results in a corresponding increase in NO production in HUV Endo. Longer-term VEGF165 pretreatment then inhibits sustained Ca2+ burst responses to ATP in HUVEC and HUV Endo. This is paralleled by a corresponding drop in ATP-stimulated NO production in HUV Endo, likely through inhibition of Cx43 gap-junction function. Thus, although VEGF165 makes a small initial positive impact on vasodilator production via direct stimulation of Ca2+ responses, this is outweighed by the greater subsequent negative impact on Ca2+ bursts and vasodilator production promoted by more potent agonists such as ATP. Overall, elevated levels of VEGF165 associated with preeclampsia could contribute to the endothelial dysfunction by preventing Ca2+ bursts to other agonists including but not limited to ATP. NEW & NOTEWORTHY: In this manuscript, we show that VEGF levels associated with preeclampsia are a net negative contributor to potential vasodilator production in both a human ex vivo and in vitro endothelial cell model. Therefore, pharmacological targeting of VEGF-stimulated signaling pathways could be a novel treatment modality for preeclampsia-related hypertension.


Subject(s)
Calcium Signaling/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Nitric Oxide/biosynthesis , Pre-Eclampsia/metabolism , Umbilical Veins/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Calcium/metabolism , Connexin 43/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Gap Junctions/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , In Vitro Techniques , Pregnancy , Umbilical Veins/metabolism
8.
Biol Reprod ; 93(3): 60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26203178

ABSTRACT

Diabetes (DM) complicates 3%-10% of pregnancies, resulting in significant maternal and neonatal morbidity and mortality. DM pregnancies are also associated with vascular dysfunction, including blunted nitric oxide (NO) output, but it remains unclear why. Herein we examine changes in endothelial NO production and its relationship to Ca(2+) signaling in endothelial cells of intact umbilical veins from control versus gestational diabetic (GDM) or preexisting diabetic subjects. We have previously reported that endothelial cells of intact vessels show sustained Ca(2+) bursting in response to ATP, and these bursts drive prolonged NO production. Herein we show that in both GDM and DM pregnancies, the incidence of Ca(2+) bursts remains similar, but there is a reduction in overall sustained phase Ca(2+) mobilization and a reduction in NO output. Further studies show damage has occurred at the level of NOS3 protein itself. Since exposure to DM serum is known to impair normal human umbilical vein endothelial cell (HUVEC) function, we further studied the ability of HUVEC to signal through Ca(2+) after they were isolated from DM and GDM subjects and maintained in culture for several days. These HUVEC showed differences in the rate of Ca(2+) bursting, with DM > GDM = control HUVEC. Both GDM- and DM-derived HUVEC showed smaller Ca(2+) bursts that were less capable of NOS3 activation compared to control HUVEC. We conclude that HUVEC from DM and GDM subjects are reprogrammed such that the Ca(2+) bursting peak shape and duration are permanently impaired. This may explain why ROS therapy alone is not effective in DM and GDM subjects.


Subject(s)
Calcium Signaling , Diabetes, Gestational/metabolism , Diabetes, Gestational/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide/biosynthesis , Pregnancy in Diabetics/metabolism , Pregnancy in Diabetics/physiopathology , Adenosine Triphosphate/metabolism , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Ionomycin/pharmacology , Ionophores/pharmacology , Nitric Oxide Synthase Type III/biosynthesis , Nitric Oxide Synthase Type III/genetics , Pregnancy , Primary Cell Culture , Prospective Studies , Signal Transduction , Young Adult
9.
Adv Exp Med Biol ; 814: 27-47, 2014.
Article in English | MEDLINE | ID: mdl-25015799

ABSTRACT

We have previously reported that the increase in vasodilator production in an ovine model pregnancy is underpinned by an increase in connexin 43 (Cx43) gap junction function, so allowing more uterine artery endothelial cells to produce a more sustained Ca(2+) burst response to agonist stimulation. Since activation of endothelial nitric oxide synthase (eNOS) requires elevated [Ca(2+)]i, it follows that the direct result of enhanced bursting in turn is an increase in nitric oxide (NO) production per cell from more cells, and for a longer period of time. Preeclampsia (PE) is associated with endothelial vasodilatory dysfunction, and the endocrine profile of women with PE includes an increase in a number of factors found in wound sites. The common action of these growth factors and cytokines in wound sites is to mediate Cx43 dysfunction through kinase phosphorylation and closure. Translational studies are now needed to establish if inhibitory phosphorylation of Cx43 in human endothelium is the cause of endothelial dysfunction in PE subjects and if so, to identify the kinase pathways best targeted for therapy in PE subjects. Consistent with this we have already shown endothelial Ca(2+) and NO responses of human umbilical vein from normal subjects are similar to that of ovine pregnant uterine artery, and that those same responses in cords from PE subjects are blunted to levels more typical of nonpregnant uterine artery. In this review we summarize the further evidence that growth factors and cytokines may indeed mediate endothelial dysfunction in PE subjects through closure of Cx43 gap junctions. We also consider how we may clinically translate our studies to humans by using intact umbilical vein and isolated HUVEC in primary culture for an initial screen of drugs to prevent deleterious Cx43 phosphorylation, with the ultimate goal of reversing PE-related endothelial dysfunction.


Subject(s)
Adaptation, Physiological/physiology , Calcium Signaling/physiology , Endothelium, Vascular/physiology , Pre-Eclampsia/etiology , Pre-Eclampsia/physiopathology , Uterine Artery/physiology , Animals , Disease Models, Animal , Female , Humans , Pregnancy , Sheep
10.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675911

ABSTRACT

Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.


Subject(s)
Chickens , Immunity, Innate , Poultry Diseases , Zika Virus Infection , Zika Virus , Animals , Chickens/virology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Disease Susceptibility , Poultry Diseases/virology , Poultry Diseases/immunology , Age Factors , Antibodies, Viral/blood , RNA, Viral/genetics
11.
Am J Physiol Heart Circ Physiol ; 305(7): H969-79, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23893163

ABSTRACT

Approximately 8% of pregnancies are complicated by preeclampsia (PE), a hypertensive condition characterized by widespread endothelial dysfunction. Reduced nitric oxide (NO) output in PE subjects has been inferred but not directly measured, and there is little understanding of why this occurs. To address this we have used direct imaging of changes in intracellular Ca(2+) concentration ([Ca(2+)]i) and NO in umbilical vein endothelium of normal and PE subjects that is still intact and on the vessel luminal surface. This was achieved by dissection and preloading with fura 2 and DAF-2 imaging dyes, respectively, before subsequent challenge with ATP (100 µM, 30 min). As a control to reveal the content of active endothelial nitric oxide synthase (eNOS) per vessel segment, results were compared with a maximal stimulus with ionomycin (5 µM, 30 min). We show for the first time that normal umbilical vein endothelial cells respond to ATP with sustained bursting that parallels sustained NO output. Furthermore, in subjects with PE, a failure of sustained [Ca(2+)]i bursting occurs in response to ATP and is associated with blunted NO output. In contrast, NO responses to maximal [Ca(2+)]i elevation using ionomycin and the levels of eNOS protein are more similar between groups than the responses to ATP. When the endothelial cells from PE subjects are isolated and allowed to recover in culture, they regain the ability under fura 2 imaging to show multiple [Ca(2+)]i bursts otherwise seen in the cells from normal subjects. Thus novel clinical therapy aimed at restoring function in vivo may be possible.


Subject(s)
Calcium Signaling , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide/metabolism , Pre-Eclampsia/metabolism , Adenosine Triphosphate/metabolism , Adolescent , Adult , Calcium Ionophores/pharmacology , Calcium Signaling/drug effects , Case-Control Studies , Cells, Cultured , Down-Regulation , Female , Fluorescent Dyes , Fura-2/analogs & derivatives , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Ionomycin/pharmacology , Microscopy, Fluorescence , Molecular Imaging/methods , Nitric Oxide Synthase Type III/metabolism , Pre-Eclampsia/physiopathology , Pre-Eclampsia/therapy , Pregnancy , Time Factors , Young Adult
12.
J Mol Endocrinol ; 70(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36197759

ABSTRACT

The epidermal growth factor receptor (EGFR) is expressed robustly in the placenta, and critical processes of pregnancy such as placental growth and trophoblast fusion are dependent on EGFR function. However, the role that aberrant EGFR signaling might play in the etiology and/or maintenance of preeclampsia (PE) remains largely unexplored. Recently, we have shown that overexpression of EGFR in cultured uterine artery endothelial cells (UAEC), which express little endogenous EGFR, remaps responsiveness away from vascular endothelial growth factor receptor (VEGFR) signaling and toward EGFR, suggesting that endothelial EGFR expression may be kept low to preserve VEGFR control of angiogenesis. Here we will consider the evidence for the possibility that the endothelial dysfunction observed in PE might in some cases result from elevation of endothelial EGFR. During pregnancy, trophoblasts are known to synthesize large amounts of EGFR protein, and the placenta regularly releases syncytiotrophoblast-derived exosomes and microparticles into the maternal circulation. Although there are no reports of elevated EGFR gene expression in preeclamptic endothelial cells, the ongoing shedding of placental vesicles into the vascular system raises the possibility that EGFR-rich vesicles might fuse with endothelium, thereby contributing to the symptoms of PE by interrupting angiogenesis and blocking pregnancy-adapted vasodilatory function.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Pregnancy , Female , Humans , Placenta , ErbB Receptors/genetics
13.
J Photochem Photobiol B ; 245: 112755, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37423001

ABSTRACT

Ultraviolet germicidal irradiation (UVGI) is a highly effective means of inactivating many bacteria, viruses, and fungi. UVGI is an attractive viral mitigation strategy against coronaviruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-2019 (COVID-19) pandemic. This investigation measures the susceptibility of two human coronaviruses to inactivation by 254 nm UV-C radiation. Human coronavirus NL63 and SARS-CoV-2 were irradiated in a collimated, dual-beam, aqueous UV reactor. By measuring fluence and integrating it in real-time, this reactor accounts for the lamp output transients during UVGI exposures. The inactivation rate constants of a one-stage exponential decay model were determined to be 2.050 cm2/mJ and 2.098 cm2/mJ for the NL63 and SARS-CoV-2 viruses, respectively. The inactivation rate constant for SARS-CoV-2 is within 2% of that of NL63, indicating that in identical inactivation environments, very similar UV 254 nm deactivation susceptibilities for these two coronaviruses would be achieved. Given the inactivation rate constant obtained in this study, doses of 1.1 mJ/cm2, 2.2 mJ/cm2, and 3.3 mJ/cm2 would result in a 90%, 99%, and 99.9% inactivation of the SARS-CoV-2 virus, respectively. The inactivation rate constant obtained in this study is significantly higher than values reported from many 254 nm studies, which suggests greater UV susceptibility to the UV-C than what was believed. Overall, results from this study indicate that 254 nm UV-C is effective for inactivation of human coronaviruses, including SARS-CoV-2.

14.
Am J Physiol Heart Circ Physiol ; 300(4): H1182-93, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21239633

ABSTRACT

Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in response to ATP than those from luteal phase. However, this is paralleled by changes in NO in response to ionomycin, suggesting this is solely due to higher levels of endothelial nitric oxide synthase (eNOS) protein in the follicular phase. In contrast, UA Endo from pregnant ewes (P-UA Endo) produces substantially more NO (4.62-fold initial maximum rate, 2.56-fold overall NO production) in response to ATP, beyond that attributed to eNOS levels alone (2.07-fold initial maximum rate, 1.93-fold overall with ionomycin). The ATP-stimulated intracellular free calcium concentration ([Ca(2+)](i)) response in individual cells of P-UA Endo comprises an initial peak followed by transient [Ca(2+)](i) bursts that are limited in the luteal phase, not altered in the follicular phase, but are sustained in pregnancy and observed in more cells. Thus pregnancy adaptation of UA Endo NO output occurs beyond the level of eNOS expression and likely through associated [Ca(2+)](i) cell signaling changes. Preeclampsia is a condition of a lack of UA Endo adaptation and poor NO production/vasodilation and is associated with elevated placental VEGF(165). While treatment of luteal NP-UA Endo and P-UA Endo with VEGF(165) acutely stimulates a very modest [Ca(2+)](i) and NO response, subsequent stimulation of the same vessel with ATP results in a blunted [Ca(2+)](i) and an associated NO response, with P-UA Endo reverting to the response of luteal NP-UA Endo. This demonstrates the importance of adaptation of cell signaling over eNOS expression in pregnancy adaptation of uterine endothelial function and further implicates VEGF in the pathophysiology of preeclampsia.


Subject(s)
Adaptation, Physiological/drug effects , Calcium Channels/metabolism , Endothelium, Vascular/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/biosynthesis , Uterine Artery/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Calcium Channels/drug effects , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Female , Ionomycin/pharmacology , Ionophores/pharmacology , Nitric Oxide Synthase Type III/biosynthesis , Placenta/chemistry , Placenta/drug effects , Placenta/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Sheep , Signal Transduction/drug effects , Uterine Artery/cytology , Uterine Artery/drug effects , Vascular Endothelial Growth Factor A/biosynthesis
15.
Mol Cell Endocrinol ; 534: 111368, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34153378

ABSTRACT

Uterine artery endothelium undergoes a form of functional adaptation during pregnancy because of an increase in Cx43 communication, resulting in increased Ca2+/IP3 exchange and more synchronous and sustained vasodilator production. We have shown previously that acute exposure to growth factors and TNF can block this adaptation through ERK and/or Src-mediated Cx43 phosphorylation. In preeclampsia such adapted function is already missing, but while elevated TNF is associated with this condition, particularly after 28 weeks (late PE), elevated circulating VEGF165 is not. Given PE is a long term condition emerging in the second half of pregnancy, and is often associated with added edema, we now compare the chronic effects of these two factors on the cell monolayer in order to establish if the breakdown of junctional adherens and tight junctional assemblies in which Cx43 resides could also explain loss of vasodilatory function. We report that while TNF can degrade monolayer integrity even in the 0.1-1 ng/ml physiologic range, VEGF up to 10 ng/ml does not. In addition, the progressive action of TNF is mediated through Src and ERK signaling to promote internalization and destruction of VE-Cadherin (VE-Cad) and ZO-1, as well as the expression and secretion of a variety of proteases. At least one protein degraded from the extracellular space is VE-Cad, resulting in release of a shed VE-Cad protein product, and consistent with monolayer breakdown being sensitive to both Src and MEK/ERK kinase inhibitors and the general protease inhibitor GM6001. We conclude that the greater association of TNF with 'late' PE is as much due to its longer term destabilizing effects on junctional assemblies as it is to acute closure of Cx43 channels themselves. New therapies aimed at stabilizing these junctional assemblies may help treat this hypertensive condition.


Subject(s)
Connexin 43/metabolism , Pre-Eclampsia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Uterine Artery/cytology , Vascular Endothelial Growth Factor A/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cell Culture Techniques , Cells, Cultured , Culture Media/chemistry , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Gene Expression Regulation , Humans , MAP Kinase Signaling System/drug effects , Models, Biological , Phosphorylation/drug effects , Pregnancy , Tumor Necrosis Factor-alpha/pharmacology , Uterine Artery/drug effects , Uterine Artery/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Zonula Occludens-1 Protein/metabolism , src-Family Kinases/metabolism
16.
Commun Biol ; 4(1): 267, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627795

ABSTRACT

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/therapy , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Time Factors , Young Adult
17.
Biol Reprod ; 82(1): 66-75, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19741206

ABSTRACT

Endothelium-mediated vasodilation is specifically enhanced in uterine circulation during pregnancy, and production of nitric oxide (NO) is increased in response to a wide array of agonists. Uterine artery endothelial cells from nonpregnant (NP-UAECs) or pregnant (P-UAECs) ewes maintained in culture still show a pregnancy-enhanced difference in ATP-stimulated endothelial NO synthase (eNOS; official symbol NOS3) activation, even though NOS3 protein, purinergic receptors, and associated cell signaling proteins are expressed at equal levels. We have also shown that the pregnancy-enhanced endothelial cell NO response to ATP requires an enhanced and sustained capacitative entry phase that is likely mediated via canonical transient receptor potential protein/inositol 1,4,5-trisphosphate receptor type 2 interaction. In this study, we now show by simultaneous video imaging of individual Fura-2-loaded cells that the pregnancy-enhanced capacitative entry phase is not continuous and equal in all cells, but is in fact mediated as a series of periodic [Ca(2+)](i) bursts within individual cells. Not only does pregnancy increase the number of bursts over a longer time period in individual cells, but also a greater proportion of cells exhibit this burst activity, and at high cell density this occurs in a synchronous manner. The mediator of cell synchronization is connexin 43 (Cx43) gap junctions because 1) Cx43 is readily detectable by Western blot analysis in UAECs, whereas Cx40 and Cx37 are weakly detected or absent, and 2) pregnancy-specific enhancement of [Ca(2+)](i) bursts by ATP is blocked by inhibitory loop peptides selective to Cx43 ((43,37)GAP27) but not by a scrambled control peptide or (40)GAP27 or (40,37)GAP26 peptides, which are specific to Cx40 or Cx37. The relationship between Ca(2+) bursts and NOS3 activation is further established by the finding that (43,37)GAP27 inhibits ATP-stimulated NOS3 activation but has no effect on cell mitogenesis. We conclude that it is pregnancy-enhanced gap junction communication between cells that underlies pregnancy enhancement of capacitative entry via TRPC3 and, in turn, NOS3 activation. Such improved gap junction function allows greater and more sustained [Ca(2+)](i) responses to agents such as ATP within a single cell, as well as the additional recruitment of greater numbers of cells to the response in a coordinated and synchronous manner to support enhanced NO production.


Subject(s)
Calcium Signaling , Connexin 43/metabolism , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Pregnancy, Animal/metabolism , Uterine Artery/cytology , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cell Count , Connexins , Endothelium, Vascular/metabolism , Female , Gap Junctions/metabolism , Oligopeptides , Pregnancy , Sheep , TRPC Cation Channels/metabolism , Uterine Artery/metabolism
18.
Biochem J ; 417(2): 501-11, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18816248

ABSTRACT

During pregnancy, VEGF (vascular endothelial growth factor) regulates in part endothelial angiogenesis and vasodilation. In the present study we examine the relative roles of VEGFRs (VEGF receptors) and associated signalling pathways mediating the effects of VEGF(165) on eNOS (endothelial nitric oxide synthase) activation. Despite equal expression levels of VEGFR-1 and VEGFR-2 in UAECs (uterine artery endothelial cells) from NP (non-pregnant) and P (pregnant) sheep, VEGF(165) activates eNOS at a greater level in P- compared with NP-UAEC, independently of Akt activation. The selective VEGFR-1 agonist PlGF (placental growth factor)-1 elicits only a modest activation of eNOS in P-UAECs compared with VEGF(165), whereas the VEGFR-2 kinase inhibitor blocks VEGF(165)-stimulated eNOS activation, suggesting VEGF(165) predominantly activates eNOS via VEGFR-2. Although VEGF(165) also activates ERK (extracellular-signal-regulated kinase)-1/2, this is not necessary for eNOS activation since U0126 blocks ERK-1/2 phosphorylation, but not eNOS activation, and the VEGFR-2 kinase inhibitor inhibits eNOS activation, but not ERK-1/2 phosphorylation. Furthermore, the inability of PlGF to activate ERK-1/2 and the ability of the VEGFR-2 selective agonist VEGF-E to activate ERK-1/2 and eNOS suggests again that both eNOS and ERK-1/2 activation occur predominantly via VEGFR-2. The lack of VEGF(165)-stimulated Akt phosphorylation is consistent with a lack of robust phosphorylation of Ser(1179)-eNOS. Although VEGF(165)-stimulated eNOS phosphorylation is observed at Ser(617) and Ser(635), pregnancy does not significantly alter this response. Our finding that VEGF(165) activation of eNOS is completely inhibited by wortmannin but not LY294002 implies a downstream kinase, possibly a wortmannin-selective PI3K (phosphoinositide 3-kinase), is acting between the VEGFR-2 and eNOS independently of Akt.


Subject(s)
Arteries/metabolism , Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Uterus/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Arteries/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Female , Phosphorylation , Pregnancy , Sheep , Signal Transduction , Uterus/drug effects
19.
Int J Neonatal Screen ; 6(3): 67, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33117906

ABSTRACT

Newborn screening for 21-hydroxylase deficiency (21OHD), the most common form of congenital adrenal hyperplasia, has been performed routinely in the United States and other countries for over 20 years. Screening provides the opportunity for early detection and treatment of patients with 21OHD, preventing salt-wasting crisis during the first weeks of life. However, current first-tier screening methodologies lack specificity, leading to a large number of false positive cases, and adequate sensitivity to detect all cases of classic 21OHD that would benefit from treatment. This review summarizes the pathology of 21OHD and also the key stages of fetal hypothalamic-pituitary-adrenal axis development and adrenal steroidogenesis that contribute to limitations in screening accuracy. Factors leading to both false positive and false negative results are highlighted, along with specimen collection best practices used by laboratories in the United States and worldwide. This comprehensive review provides context and insight into the limitations of newborn screening for 21OHD for laboratorians, primary care physicians, and endocrinologists.

20.
Mol Cell Endocrinol ; 510: 110814, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32259635

ABSTRACT

Sustained Ca2+ burst signaling is crucial for endothelial vasodilator production and is disrupted by growth factors and cytokines. Conjugated linoleic acid (CLA), a Src inhibitor in certain preparations, is generally regarded as safe during pregnancy by the FDA. Multiple CLA preparations; t10, c12 or c9, t11 CLA, or a 1:1 mixture of the two were administered before growth factor or cytokine treatment. Growth factors and cytokines caused a significant decrease in Ca2+ burst numbers in response to ATP stimulation. Both t10, c12 CLA and the 1:1 mixture rescued VEGF165 or TNFα inhibited Ca2+ bursts and correlated with Src-specific phosphorylation of connexin 43. VEGF165, TNFα, and IL-6 in combination at physiologic concentrations revealed IL-6 amplified the inhibitory effects of lower dose of VEGF165 and TNFα. Again, the 1:1 CLA mixture was most effective at rescue of function. Therefore, CLA formulations may be a promising treatment for endothelial dysfunction in diseases such as preeclampsia.


Subject(s)
Calcium Signaling/drug effects , Connexin 43/metabolism , Cytokines/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Linoleic Acids, Conjugated/pharmacology , Adenosine Triphosphate/pharmacology , Fibroblast Growth Factor 2/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Isomerism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Regression Analysis , Tumor Necrosis Factor-alpha/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL