Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Food Policy ; 83: 271-284, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31007359

ABSTRACT

Micronutrient deficiencies, also known as hidden hunger, affect two billion people worldwide, curtailing their ability to lead healthy, productive lives. Biofortified staple crops, bred to be rich in micronutrient content, are a cost-effective and scalable solution to alleviating micronutrient deficiency, particularly among rural households who consume what they produce. Delivery of biofortified planting material in Rwanda began in 2012, and it is important to learn from the efforts undertaken to date to inform the design of higher impact - lower cost delivery strategies for scaling up these crops. In this paper, we use a nationally representative household survey of bean producers and delivery data from seven consecutive seasons and apply duration analysis to estimate the impact of different delivery approaches on household time to adoption, disadoption and readoption of iron-biofortified beans in Rwanda. Proximity to formal delivery via sales of small packets of planting material quickens adoption and readoption, while delivery of larger quantities of planting material to small-scale producers within a village slows disadoption of iron-biofortified beans. Informal dissemination within social networks and access to extension are also major drivers of rapid adoption. In addition, households whose main decision maker for bean production is a woman, has some formal education, and more years of experience growing beans disadopt iron-biofortified beans more slowly than other households. These findings provide evidence that current efforts to promote iron-biofortified crops have been successful and are expected to inform future development of sustainable and cost-effective delivery models for biofortified crops in Rwanda and elsewhere.

2.
Front Plant Sci ; 14: 1099496, 2023.
Article in English | MEDLINE | ID: mdl-37465389

ABSTRACT

The CGIAR biofortification program, HarvestPlus, was founded with the aim of improving the quality of diets through micronutrient-dense varieties of staple food crops. Implemented in four phases - discovery, development, delivery and scaling - the program was designed to be interdisciplinary, with plant breeding R&D supported by nutrition and socio-economic research. This paper explains the need, use and usefulness of socio-economic research in each phase of the program. Ex ante and ex post benefit-cost analyses facilitated fundraising for initial biofortification R&D and implementation in each subsequent phase, as well as encouraged other public, private, and civil society and non-governmental organizations to take on and mainstream biofortification in their crop R&D, policies, and programs. Socio-economics research helped guide plant breeding by identifying priority micronutrient- crop- geography combinations for maximum impact. Health impacts of biofortification could be projected both by using empirical results obtained through randomized controlled bioefficacy trials conducted by nutritionists, and through farmer-adoption models estimating impact at scale. Farmer and consumer surveys and monitoring systems provided the underlying information for estimating farmer adoption models and helped understand input/output markets, farmer and consumer preferences, and additional opportunities and challenges -all of which informed crop breeding and delivery activities, while building the knowledge base for catalyzing the scaling of biofortification.

3.
Food Nutr Bull ; 44(1_suppl): S14-S26, 2023 09.
Article in English | MEDLINE | ID: mdl-36016479

ABSTRACT

This article presents the evolution of the biofortification program in Nigeria over the last decade and the role of interdisciplinary research in informing cost-effective, efficient, and inclusive development; implementation; and scaling of this program. Launched in 2011 to improve Nigeria's food systems to deliver accessible and affordable nutrients through commonly consumed staples, the Nigeria biofortification program was implemented through an effective partnership between the CGIAR and public, private, and civil society sectors at federal, state, and local levels. By the end of 2021, several biofortified varieties of Nigeria's 2 main staples, namely cassava and maize, were officially released for production by smallholders, with several biofortified varieties of other key staples (including pearl millet, rice, and sorghum) either under testing or in the release pipeline. In 2021, the program was estimated to benefit 13 million Nigerians consuming biofortified cassava and maize varieties. The evidence on the nutritional impact, consumer and farmer acceptance, and cost-effective scalability of biofortified crops documented by the program resulted in the integration of biofortified crops in several key national public policies and social protection programs; private seed and food company products/investments, as well as in humanitarian aid.


Subject(s)
Biofortification , Food, Fortified , Humans , Crops, Agricultural , Micronutrients , Vegetables
4.
Front Nutr ; 9: 963748, 2022.
Article in English | MEDLINE | ID: mdl-36313073

ABSTRACT

Sound monitoring and evaluation (M&E) systems are needed to inform effective biofortification program management and implementation. Despite the existence of M&E frameworks for biofortification programs, the use of indicators, metrics, methods, and tools (IMMT) are currently not harmonized, rendering the tracking of biofortification programs difficult. We aimed to compile IMMT for M&E of existing biofortification programs and recommend a sub-set of high-level indicators (HLI) for a harmonized global M&E framework. We conducted (1) a mapping review to compile IMMT for M&E biofortification programs; (2) semi-structured interviews (SSIs) with biofortification programming experts (and other relevant stakeholders) to contextualize findings from step 1; and (3) compiled a generic biofortification program Theory of Change (ToC) to use it as an analytical framework for selecting the HLI. This study revealed diversity in seed systems and crop value chains across countries and crops, resulting in differences in M&E frameworks. Yet, sufficient commonalities between implementation pathways emerged. A set of 17 HLI for tracking critical results along the biofortification implementation pathway represented in the ToC is recommended for a harmonized global M&E framework. Further research is needed to test, revise, and develop mechanisms to harmonize the M&E framework across programs, institutions, and countries.

5.
J Environ Manage ; 91(11): 2163-71, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20547438

ABSTRACT

In this paper we employ a stated preference environmental valuation technique, namely the choice experiment method, to estimate local public's willingness to pay (WTP) for improvements in the capacity and technology of a sewage treatment plant (STP) in Chandernagore municipality, located on the banks of the River Ganga in India. A pilot choice experiment study is administered to 150 randomly selected Chandernagore residents and the data are analysed using the conditional logit model with interactions. The results reveal that residents of this municipality are willing to pay significant amounts in terms of higher monthly municipality taxes to ensure the full capacity of the STP is used for primary treatment and the technology is upgraded to enable secondary treatment. Overall, the results reported in this paper support increased investments to improve the capacity and technology of STPs to reduce water pollution, and hence environmental and health risks that are currently threatening the sustainability of the economic, cultural and religious values this sacred river generates.


Subject(s)
Environmental Exposure/economics , Financing, Personal , Rivers , Sewage , Waste Disposal, Fluid/economics , Water Pollution/economics , Water Purification/economics , Choice Behavior , Conservation of Natural Resources/economics , India , Logistic Models , Pilot Projects , Taxes
6.
Food Secur ; 12(4): 823-830, 2020.
Article in English | MEDLINE | ID: mdl-32839664

ABSTRACT

COVID-19 has had an instant effect on food systems in developing countries. Restrictions to the movement of people and goods have impaired access to markets, services and food. Unlike other concurrent crises, rather than threatening the material hardware of food systems, COVID-19 has so far affected the 'software' of food systems, highlighting again that connectivity is at the heart of these systems. Drops in demand, the loss of markets and employment and growing concerns about international cooperation are indications of possible deeper disruptions to come. Amidst this uncertainty, strategies to safeguard food and nutrition security of the world's poor need to prioritize diversification of production and markets. Nutritious, biofortified crops such as potato, sweetpotato, but also wheat, maize and beans among others, can play a more significant role to provide key micronutrients (vitamin A, iron, zinc) at large scale. Strong local market chains, robust smallholder production systems and increasing commercial utilization make these crops powerful vehicles for securing nutrition when markets and mobility look uncertain. We posit that the evolving impacts of COVID-19 provide an opportunity to focus agricultural innovations, including the development and delivery of biofortified crops, on new and more specifically defined 'jobs to be done' throughout the food system. This will help bridge some of the current disruptions in supply and demand and will help prepare food systems for future crises.

7.
Curr Dev Nutr ; 4(8): nzaa107, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32734133

ABSTRACT

BACKGROUND: Biofortification of staple crops has the potential to increase nutrient intakes and improve health outcomes. Despite program data on the number of farming households reached with and growing biofortified crops, information on the coverage of biofortified foods in the general population is often lacking. Such information is needed to ascertain potential for impact and identify bottlenecks to parts of the impact pathway. OBJECTIVES: We aimed to develop and test methods and indicators for assessing household coverage of biofortified foods. METHODS: To assess biofortification programs, 5 indicators of population-wide household coverage were developed, building on approaches previously used to assess large-scale food fortification programs. These were 1) consumption of the food; 2) awareness of the biofortified food; 3) availability of the biofortified food; 4) consumption of the biofortified food (ever); and 5) consumption of the biofortified food (current). To ensure that the indicators are applicable to different settings they were tested in a cross-sectional household-based cluster survey in rural and peri-urban areas in Musanze District, Rwanda where planting materials for iron-biofortified beans (IBs) and orange-fleshed sweet potatoes (OFSPs) were delivered. RESULTS: Among the 242 households surveyed, consumption of beans and sweet potatoes was 99.2% and 96.3%, respectively. Awareness of IBs or OFSPs was 65.7% and 48.8%, and availability was 23.6% and 10.7%, respectively. Overall, 15.3% and 10.7% of households reported ever consuming IBs and OFSPs, and 10.4% and 2.1% of households were currently consuming these foods, respectively. The major bottlenecks to coverage of biofortified foods were awareness and availability. CONCLUSIONS: These methods and indicators fill a gap in the availability of tools to assess coverage of biofortified foods, and the results of the survey highlight their utility for identifying bottlenecks. Further testing is warranted to confirm the generalizability of the coverage indicators and inform their operationalization when deployed in different settings.

8.
Ann N Y Acad Sci ; 1390(1): 104-114, 2017 02.
Article in English | MEDLINE | ID: mdl-28253441

ABSTRACT

Biofortification is the process of increasing the density of vitamins and minerals in a crop through plant breeding-using either conventional methods or genetic engineering-or through agronomic practices. Over the past 15 years, conventional breeding efforts have resulted in the development of varieties of several staple food crops with significant levels of the three micronutrients most limiting in diets: zinc, iron, and vitamin A. More than 15 million people in developing countries now grow and consume biofortified crops. Evidence from nutrition research shows that biofortified varieties provide considerable amounts of bioavailable micronutrients, and consumption of these varieties can improve micronutrient deficiency status among target populations. Farmer adoption and consumer acceptance research shows that farmers and consumers like the various production and consumption characteristics of biofortified varieties, as much as (if not more than) popular conventional varieties, even in the absence of nutritional information. Further development and delivery of these micronutrient-rich varieties can potentially reduce hidden hunger, especially in rural populations whose diets rely on staple food crops. Future work includes strengthening the supply of and the demand for biofortified staple food crops and facilitating targeted investment to those crop-country combinations that have the highest potential nutritional impact.


Subject(s)
Biofortification , Crops, Agricultural , Food, Fortified , Micronutrients/chemistry , Micronutrients/deficiency , Plant Breeding , Agriculture , Biological Availability , Developing Countries , Diet , Geography , Humans , Rural Population
9.
Sci Total Environ ; 365(1-3): 105-22, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16647102

ABSTRACT

The need for economic analysis for the design and implementation of efficient water resources management policies is well documented in the economics literature. This need is also emphasised in the European Union's recent Water Framework Directive (2000/60/EC), and is relevant to the objectives of Euro-limpacs, an EU funded project which inter alia, aims to provide a decision-support system for valuing the effects of future global change on Europe's freshwater ecosystems. The purpose of this paper is to define the role of economic valuation techniques in assisting in the design of efficient, equitable and sustainable policies for water resources management in the face of environmental problems such as pollution, intensive land use in agriculture and climate change. The paper begins with a discussion of the conceptual economic framework that can be used to inform water policy-making. An inventory of the available economic valuation methods is presented and the scope and suitability of each for studying various aspects of water resources are critically discussed. Recent studies that apply these methods to water resources are reviewed. Finally, an application of one of the economic valuation methods, namely the contingent valuation method, is presented using a case study of the Cheimaditida wetland in Greece.


Subject(s)
Conservation of Natural Resources/economics , Ecosystem , Waste Management/methods , Water Pollution , Water Supply/economics , Agriculture , Climate , Conservation of Natural Resources/legislation & jurisprudence , Cost-Benefit Analysis , Data Collection , Decision Making , European Union , Fresh Water/analysis , Greece , Quality Control , Water Pollution/economics , Water Pollution/prevention & control , Water Supply/legislation & jurisprudence
10.
Adv Nutr ; 5(5): 568-70, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25469399

ABSTRACT

Biofortification is the breeding of crops to increase their nutritional value, including increased contents of micronutrients or their precursors. Biofortification aims to increase nutrient levels in crops during plant growth rather than during processing of the crops into foods. Emerging research from 8 human trials conducted in the past decade with staple food crops that have been biofortified by traditional plant breeding methods were presented in this symposium. Specifically, data from 6 efficacy and 2 effectiveness trials were discussed to assess the effects of regular consumption of these enhanced staple crops on improving population vitamin A and iron status and reducing the burden of micronutrient deficiencies in targeted populations living in South Asia, Sub-Saharan Africa, and Latin America. Biofortified food crops appear to have a positive impact on nutritional and functional health outcomes, as the results from the trials suggest. Additional implementation research will be needed to ensure maximization of the beneficial impact of this intervention and a smooth scaling up to make biofortification a sustainable intervention in public health. The challenge for the global health community remains how to take this efficacious intervention and implement at large scale in the real world.


Subject(s)
Crops, Agricultural/chemistry , Food, Fortified , Iron, Dietary/administration & dosage , Vitamin A/administration & dosage , Asia , Child , Congresses as Topic , Cost-Benefit Analysis , Fabaceae/chemistry , Female , Humans , Manihot/chemistry , Meta-Analysis as Topic , Micronutrients/administration & dosage , Nutritional Physiological Phenomena , Oryza/chemistry , Pennisetum , Randomized Controlled Trials as Topic , Zea mays/chemistry
11.
J Environ Manage ; 88(4): 1099-108, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17658678

ABSTRACT

Recent developments in national and European Union waste management policy have prompted considerable interest in alternative waste management programs, such as recycling, which could divert a portion of the municipal solid waste stream from landfills. This paper examines household preferences for kerbside recycling services and uses a stated preference choice experiment method to estimate households' valuation of such services. Using a sample of 188 households in the London area, the empirical analysis yields estimates of the willingness to pay for the number of 'dry' materials collected, the collection of compost, textile collection and the frequency of collection.


Subject(s)
Choice Behavior , Conservation of Natural Resources , Data Collection , London , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL