Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 100(1): 199-211, 2019 10.
Article in English | MEDLINE | ID: mdl-31155775

ABSTRACT

Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.


Subject(s)
Arabidopsis/genetics , Mutagenesis, Insertional/methods , Mutation , Phenomics/methods , DNA, Bacterial/genetics , Environment , Genetic Variation , Genomics/methods , Phenotype , Plants, Genetically Modified
2.
Article in English | MEDLINE | ID: mdl-31316686

ABSTRACT

We present a curriculum description, an initial student outcome investigation, and sample scientific results for a representative Course-Based Undergraduate Research Experience (CURE) that is part of the "Undergraduates Phenotyping Arabidopsis Knockouts" (unPAK) network. CUREs in the unPAK network characterize quantitative phenotypes of the model plant Arabidopsis from across environments to uncover connections between genotype and phenotype. Students in unPAK CUREs grow plants in a replicated block design and make quantitative measurements throughout the semester. This CURE enables students to answer plant science questions that draw from fields such as environmental science, genetics, ecology, and evolution. Findings indicate that this experience provides students with opportunities to make relevant scientific discoveries. Eighty percent of student datasets produced from the CURE met criteria for inclusion in the project database, indicative of student learning in data collection and analysis of quantitative plant traits. Student datasets uncovered novel effects of mutation on plant form. In addition, students' science self-efficacy increased as a result of course participation, and faculty feedback on course implementation was positive. We present unPAK as a new network that supports CUREs and research experiences focused on collecting biological data made publicly available to the scientific community. The unPAK CUREs can be tailored to address instructor interests or pedagogical needs while involving students in research investigating quantitative plant phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL