Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biol Pharm Bull ; 36(1): 31-5, 2013.
Article in English | MEDLINE | ID: mdl-23302634

ABSTRACT

Fluoroquinolones reportedly induce hypoglycemia through stimulation of insulin secretion from pancreatic ß-cells via inhibition of K(ATP) channels and activation of L-type voltage-dependent Ca(2+) channels. In physiological condition, the cytosolic Ca(2+) concentration ([Ca(2+)](c)) is also regulated by release of Ca(2+) from intracellular Ca(2+) stores. In this study, we investigated the mechanism of insulin secretion induced by fluoroquinolones, with respect to intracellular Ca(2+) stores. Even where the absence of supplemental extracellular Ca(2+), insulin secretion and [Ca(2+)](c) were increased by gatifloxacin, levofloxacin or tolbutamide. Insulin secretion and the rise of [Ca(2+)](c) induced by fluoroquinolones were reduced by depleting of Ca(2+) in endoplasmic reticumum (ER) by thapsigargin, and inhibiting ryanodine receptor of ER by dantrolene. Inhibition of inositol 1,4,5-triphosphate receptor of ER by xestospongin C suppressed insulin secretion induced by fluoroquinolones, whereas it did not affect [Ca(2+)](c). Destruction of acidic Ca(2+) stores such as lysosome and lysosome-related organelles by glycyl-L-phenylalanine-2-nephthylamide (GPN) did not affect insulin secretion and the rise of [Ca(2+)](c) induced by fluoroquinolones. The increase in insulin and [Ca(2+)](c) induced by tolbutamide were reduced by thapsigargin, dantrolene, and GPN but not by xestospongin C. In conclusion, fluoroquinolones induces Ca(2+) release from ER mediated by the ryanodine receptor, and the reaction might involve in insulin secretion. Sulfonylureas induce Ca(2+) release from GPN-sensitive acidic Ca(2+) stores, but fluoroquinolones did not.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fluoroquinolones/pharmacology , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Levofloxacin , Ofloxacin/pharmacology , Animals , Calcium Signaling/drug effects , Cell Line , Cricetinae , Gatifloxacin , Insulin Secretion , Insulin-Secreting Cells/metabolism , Tolbutamide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL