ABSTRACT
The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2RW/+ and Dnm2RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2RW/+ mice and rescued the perinatal lethality and survival of Dnm2RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/physiology , Muscular Atrophy/physiopathology , Muscular Diseases/pathology , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Dynamin II/genetics , Dynamin II/metabolism , Humans , Mice , Mice, Knockout , Protein BindingABSTRACT
AIMS: Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS: Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS: HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION: Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.
Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Animals , Mice , Disease Models, Animal , Dynamin II/genetics , Dynamin II/metabolism , Muscle, Skeletal/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Neurons/metabolism , Synaptic TransmissionABSTRACT
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Subject(s)
Dynamin II/metabolism , Muscle, Skeletal/injuries , Myopathies, Structural, Congenital/genetics , Satellite Cells, Skeletal Muscle/physiology , Animals , Dynamin II/genetics , Gene Expression Regulation , Gene Knock-In Techniques , Mice , Mutation , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , RegenerationABSTRACT
Centronuclear myopathies (CNM) are a group of severe muscle diseases for which no effective therapy is currently available. We have previously shown that reduction of the large GTPase DNM2 in a mouse model of the X-linked form, due to loss of myotubularin phosphatase MTM1, prevents the development of the skeletal muscle pathophysiology. As DNM2 is mutated in autosomal dominant forms, here we tested whether DNM2 reduction can rescue DNM2-related CNM in a knock-in mouse harboring the p.R465W mutation (Dnm2RW/+) and displaying a mild CNM phenotype similar to patients with the same mutation. A single intramuscular injection of adeno-associated virus-shRNA targeting Dnm2 resulted in reduction in protein levels 5 wk post injection, with a corresponding improvement in muscle mass and fiber size distribution, as well as an improvement in histopathological CNM features. To establish a systemic treatment, weekly i.p. injections of antisense oligonucleotides targeting Dnm2 were administered to Dnm2RW/+mice for 5 wk. While muscle mass, histopathology, and muscle ultrastructure were perturbed in Dnm2RW/+mice compared with wild-type mice, these features were indistinguishable from wild-type mice after reducing DNM2. Therefore, DNM2 knockdown via two different strategies can efficiently correct the myopathy due to DNM2 mutations, and it provides a common therapeutic strategy for several forms of centronuclear myopathy. Furthermore, we provide an example of treating a dominant disease by targeting both alleles, suggesting that this strategy may be applied to other dominant diseases.
Subject(s)
Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mutation/genetics , Protein Tyrosine Phosphatases, Non-Receptor/geneticsABSTRACT
Dynamin 2 (DNM2) is a GTP-binding protein that controls endocytic vesicle scission and defines a whole class of dynamin-dependent endocytosis, including clathrin-mediated endocytosis by caveoli. It has been suggested that mutations in the DNM2 gene, associated with 3 inherited diseases, disrupt endocytosis. However, how exactly mutations affect the nanoscale morphology of endocytic machinery has never been studied. In this paper, we used live correlative scanning ion conductance microscopy (SICM) and fluorescence confocal microscopy (FCM) to study how disease-associated mutations affect the morphology and kinetics of clathrin-coated pits (CCPs) by directly following their dynamics of formation, maturation, and internalization in skin fibroblasts from patients with centronuclear myopathy (CNM) and in Cos-7 cells expressing corresponding dynamin mutants. Using SICM-FCM, which we have developed, we show how p.R465W mutation disrupts pit structure, preventing its maturation and internalization, and significantly increases the lifetime of CCPs. Differently, p.R522H slows down the formation of CCPs without affecting their internalization. We also found that CNM mutations in DNM2 affect the distribution of caveoli and reduce dorsal ruffling in human skin fibroblasts. Collectively, our SICM-FCM findings at single CCP level, backed up by electron microscopy data, argue for the impairment of several forms of endocytosis in DNM2-linked CNM.-Ali, T., Bednarska, J., Vassilopoulos, S., Tran, M., Diakonov, I. A., Ziyadeh-Isleem, A., Guicheney, P., Gorelik, J., Korchev, Y. E., Reilly, M. M., Bitoun, M., Shevchuk, A. Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin.
Subject(s)
Dynamin II/genetics , Endocytosis/genetics , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Adult , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Clathrin/genetics , Female , Fibroblasts/pathology , Humans , Kinetics , Male , Microscopy, Confocal/methods , Microscopy, Electron, Scanning/methods , Microscopy, Fluorescence/methodsABSTRACT
KEY POINTS: Dynamin 2 is a ubiquitously expressed protein involved in membrane trafficking processes. Mutations in the gene encoding dynamin 2 are responsible for a congenital myopathy associated with centrally located nuclei in the muscle fibres. Using muscle fibres from a mouse model of the most common mutation responsible for this disease in humans, we tested whether altered Ca2+ signalling and excitation-contraction coupling contribute to muscle weakness. The plasma membrane network that carries the electrical excitation is moderately perturbed in the diseased muscle fibres. The excitation-activated Ca2+ input fluxes across both the plasma membrane and the membrane of the sarcoplasmic reticulum are defective in the diseased fibres, which probably contributes to muscle weakness in patients. ABSTRACT: Mutations in the gene encoding dynamin 2 (DNM2) are responsible for autosomal dominant centronuclear myopathy (AD-CNM). We studied the functional properties of Ca2+ signalling and excitation-contraction (EC) coupling in muscle fibres isolated from a knock-in (KI) mouse model of the disease, using confocal imaging and the voltage clamp technique. The transverse-tubule network organization appeared to be unaltered in the diseased fibres, although its density was reduced by â¼10% compared to that in control fibres. The density of Ca2+ current through CaV1.1 channels and the rate of voltage-activated sarcoplasmic reticulum Ca2+ release were reduced by â¼60% and 30%, respectively, in KI vs. control fibres. In addition, Ca2+ release in the KI fibres reached its peak value 10-50 ms later than in control ones. Activation of Ca2+ transients along the longitudinal axis of the fibres was more heterogeneous in the KI than in the control fibres, with the difference being exacerbated at intermediate membrane voltages. KI fibres exhibited spontaneous Ca2+ release events that were almost absent from control fibres. Overall, the results of the present study demonstrate that Ca2+ signalling and EC coupling exhibit a number of dysfunctions likely contributing to muscle weakness in DNM2-related AD-CNM.
Subject(s)
Dynamin II/genetics , Excitation Contraction Coupling , Muscle Fibers, Skeletal/metabolism , Myopathies, Structural, Congenital/metabolism , Animals , Calcium Channels, L-Type/metabolism , Calcium Signaling , Cells, Cultured , Membrane Potentials , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/physiology , Mutation, Missense , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/physiopathologyABSTRACT
In a dominant mouse ethylnitrosurea mutagenesis screen for genes regulating erythropoiesis, we identified a pedigree with a novel microcytic hypochromia caused by a V235G missense mutation in Dynamin 2 (Dnm2). Mutations in Dnm2, a GTPase, are highly disease-specific and have been implicated in four forms of human diseases: centronuclear myopathy, Charcot-Marie Tooth neuropathy and, more recently, T-cell leukaemia and Hereditary Spastic Paraplegia, but red cell abnormalities have not been reported to date. The V235G mutation lies within a crucial GTP nucleotide-binding pocket of Dnm2, and resulted in defective GTPase activity and incompatibility with life in the homozygous state. Dnm2 is an essential mediator of clathrin-mediated endocytosis, which is required for the uptake of transferrin (Tf) into red cells for incorporation of haem. Accordingly, we observed significantly reduced Tf uptake by Dnm2+/V235G cells, which led to impaired endosome formation. Despite these deficiencies, surprisingly all iron studies were unchanged, suggesting an unexplained alternative mechanism underlies microcytic anaemia in Dnm2+/V235G mice. This study provides the first in vivo evidence for the requirements of Dnm2 in normal erythropoiesis.
Subject(s)
Anemia, Hypochromic/genetics , Dynamin II/genetics , Mutation, Missense , Anemia, Hypochromic/blood , Animals , Chromosome Mapping/methods , Disease Models, Animal , Dynamin II/deficiency , Dynamin II/physiology , Endocytosis/genetics , Endocytosis/physiology , Erythrocytes/metabolism , Erythrocytes/pathology , Genotype , High-Throughput Nucleotide Sequencing/methods , Mice, Knockout , Transferrin/metabolismABSTRACT
Centronuclear myopathies are congenital muscle disorders characterized by type I myofibre predominance and an increased number of muscle fibres with nuclear centralization. The severe neonatal X-linked form is due to mutations in MTM1, autosomal recessive centronuclear myopathy with neonatal or childhood onset results from mutations in BIN1 (amphiphysin 2), and dominant cases were previously associated to mutations in DNM2 (dynamin 2). Our aim was to determine the genetic basis and physiopathology of patients with mild dominant centronuclear myopathy without mutations in DNM2. We hence established and characterized a homogeneous cohort of nine patients from five families with a progressive adult-onset centronuclear myopathy without facial weakness, including three sporadic cases and two families with dominant disease inheritance. All patients had similar histological and ultrastructural features involving type I fibre predominance and hypotrophy, as well as prominent nuclear centralization and clustering. We identified heterozygous BIN1 mutations in all patients and the molecular diagnosis was complemented by functional analyses. Two mutations in the N-terminal amphipathic helix strongly decreased the membrane-deforming properties of amphiphysin 2 and three stop-loss mutations resulted in a stable protein containing 52 supernumerary amino acids. Immunolabelling experiments revealed abnormal central accumulation of dynamin 2, caveolin-3, and the autophagic marker p62, and general membrane alterations of the triad, the sarcolemma, and the basal lamina as potential pathological mechanisms. In conclusion, we identified BIN1 as the second gene for dominant centronuclear myopathy. Our data provide the evidence that specific BIN1 mutations can cause either recessive or dominant centronuclear myopathy and that both disorders involve different pathomechanisms.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Adult , Age of Onset , Dynamin II/genetics , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolismABSTRACT
Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.
Subject(s)
Autophagy , Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Animals , Disease Models, Animal , Dynamin II/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Genotype , Glycogen/metabolism , Homozygote , Liver/metabolism , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Subcellular Fractions , Time FactorsABSTRACT
Autosomal dominant centronuclear myopathy is a rare congenital myopathy characterized by delayed motor milestones and muscular weakness. In 11 families affected by centronuclear myopathy, we identified recurrent and de novo missense mutations in the gene dynamin 2 (DNM2, 19p13.2), which encodes a protein involved in endocytosis and membrane trafficking, actin assembly and centrosome cohesion. The transfected mutants showed reduced labeling in the centrosome, suggesting that DNM2 mutations might cause centronuclear myopathy by interfering with centrosome function.
Subject(s)
Dynamin II/genetics , Mutation, Missense/genetics , Myopathies, Structural, Congenital/genetics , Actins , Cell Membrane/metabolism , Centrosome/metabolism , Endocytosis , Female , Genes, Dominant , Humans , Male , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNAABSTRACT
Autosomal dominant centronuclear myopathy (AD-CNM) is a rare congenital myopathy characterized by muscle weakness and centrally located nuclei in muscle fibers in the absence of any regeneration. AD-CNM is due to mutations in the DNM2 gene encoding dynamin 2 (DNM2), a large GTPase involved in intracellular membrane trafficking and a regulator of actin and microtubule cytoskeletons. DNM2 mutations are associated with a broad clinical spectrum ranging from severe neonatal to less severe late-onset forms. The histopathological signature includes nuclear centralization, predominance and atrophy of type 1 myofibers and radiating sarcoplasmic strands. To explain the muscle dysfunction, several pathophysiological mechanisms affecting key mechanisms of muscle homeostasis have been identified. They include defects in excitation-contraction coupling, muscle regeneration, mitochondria or autophagy. Several therapeutic approaches are under development by modulating the expression of DNM2 in a pan-allelic manner or by allele-specific silencing targeting only the mutated allele, which open the era of clinical trials for this pathology.
Title: La myopathie centronucléaire liée au gène de la dynamine 2. Abstract: La myopathie centronucléaire autosomique dominante (AD-CNM) est une myopathie congénitale rare caractérisée par une faiblesse musculaire et par la présence de noyaux centraux dans les fibres musculaires en absence de tout processus de régénération. L'AD-CNM est due à des mutations du gène DNM2 codant la dynamine 2 (DNM2), une volumineuse GTPase impliquée dans le trafic membranaire intracellulaire et un régulateur des cytosquelettes d'actine et de microtubules. Les mutations de la DNM2 sont associées à un large éventail clinique allant de formes sévères néonatales à des formes moins graves à début plus tardif. La signature histopathologique inclut une centralisation nucléaire, une prédominance et une atrophie des fibres lentes, ainsi que des travées sarcoplasmiques en rayons de roue. Pour expliquer la dysfonction musculaire, plusieurs mécanismes physiopathologiques affectant des étapes clés de l'homéostasie musculaire ont été identifiés. Ils incluent des défauts du couplage excitation-contraction, de la régénération musculaire, des mitochondries ou de l'autophagie. Plusieurs approches thérapeutiques sont en développement, en particulier la modulation de l'expression de la DNM2 pan-allélique ou ne ciblant que l'allèle muté, ouvrant ainsi la porte à des essais cliniques dans cette pathologie.
Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Humans , Infant, Newborn , Dynamin II/genetics , Dynamin II/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathologyABSTRACT
Excitation-contraction coupling requires a highly specialized membrane structure, the triad, composed of a plasma membrane invagination, the T-tubule, surrounded by two sarcoplasmic reticulum terminal cisternae. Although the precise mechanisms governing T-tubule biogenesis and triad formation remain largely unknown, studies have shown that caveolae participate in T-tubule formation and mutations of several of their constituents induce muscle weakness and myopathies. Here, we demonstrate that, at the plasma membrane, Bin1 and caveolae composed of caveolin-3 assemble into ring-like structures from which emerge tubes enriched in the dihydropyridine receptor. Bin1 expression lead to the formation of both rings and tubes and we show that Bin1 forms scaffolds on which caveolae accumulate to form the initial T-tubule. Cav3 deficiency caused by either gene silencing or pathogenic mutations results in defective ring formation and perturbed Bin1-mediated tubulation that may explain defective T-tubule organization in mature muscles. Our results uncover new pathophysiological mechanisms that may prove relevant to myopathies caused by Cav3 or Bin1 dysfunction.
Subject(s)
Adaptor Proteins, Signal Transducing , Caveolae , Adaptor Proteins, Signal Transducing/metabolism , Calcium Channels, L-Type/metabolism , Caveolae/metabolism , Cell Membrane/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , MiceABSTRACT
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.
Subject(s)
Dynamin II/genetics , Genes, Dominant , Genetic Association Studies , Mutation , Myopathies, Structural, Congenital/genetics , Amino Acid Sequence , Dynamin II/chemistry , Humans , Molecular Sequence Data , Myopathies, Structural, Congenital/diagnosis , Polymorphism, Genetic , Sequence AlignmentABSTRACT
Autosomal dominant centronuclear myopathy (AD-CNM) is due to mutations in the gene encoding dynamin 2 (DNM2) involved in endocytosis and intracellular membrane trafficking. To understand the pathomechanisms resulting from a DNM2 mutation, we generated a knock-in mouse model expressing the most frequent AD-CNM mutation (KI-Dnm2(R465W)). Heterozygous (HTZ) mice developed a myopathy showing a specific spatial and temporal muscle involvement. In the primarily and prominently affected tibialis anterior muscle, impairment of the contractile properties was evidenced at weaning and was progressively associated with atrophy and histopathological abnormalities mainly affecting mitochondria and reticular network. Expression of genes involved in ubiquitin-proteosome and autophagy pathways was up-regulated during DNM2-induced atrophy. In isolated muscle fibers from wild-type and HTZ mice, Dnm2 localized in regions of intense membrane trafficking (I-band and perinuclear region), emphasizing the pathophysiological hypothesis in which DNM2-dependent trafficking would be altered. In addition, HTZ fibers showed an increased calcium concentration as well as an intracellular Dnm2 and dysferlin accumulation. A similar dysferlin retention, never reported so far in congenital myopathies, was also demonstrated in biopsies from DNM2-CNM patients and can be considered as a new marker to orientate direct genetic testing. Homozygous (HMZ) mice died during the first hours of life. Impairment of clathrin-mediated endocytosis, demonstrated in HMZ embryonic fibroblasts, could be the cause of lethality. Overall, this first mouse model of DNM2-related myopathy shows the crucial role of DNM2 in muscle homeostasis and will be a precious tool to study DNM2 functions in muscle, pathomechanisms of DNM2-CNM and developing therapeutic strategies.
Subject(s)
Dynamin II/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/physiopathology , Animals , Behavior, Animal , Calcium/metabolism , Dysferlin , Embryo, Mammalian/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Heterozygote , Homozygote , Humans , Immunohistochemistry , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Motor Activity/physiology , Muscle Contraction/physiology , Muscle Proteins/metabolism , Muscle Weakness/complications , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/complications , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Phenotype , Protein Transport , Subcellular Fractions/metabolismABSTRACT
Dominant centronuclear myopathy (CNM) is a rare form of congenital myopathy associated with a wide clinical spectrum, from severe neonatal to milder adult forms. There is no available treatment for this disease due to heterozygous mutations in the DNM2 gene encoding Dynamin 2 (DNM2). Dominant DNM2 mutations also cause rare forms of Charcot-Marie-Tooth disease and hereditary spastic paraplegia, and deleterious DNM2 overexpression was noticed in several diseases. The proof of concept for therapy by allele-specific RNA interference devoted to silence the mutated mRNA without affecting the normal allele was previously achieved in a mouse model and patient-derived cells, both expressing the most frequent DNM2 mutation in CNM. In order to have versatile small interfering RNAs (siRNAs) usable regardless of the mutation, we have developed allele-specific siRNAs against two non-pathogenic single-nucleotide polymorphisms (SNPs) frequently heterozygous in the population. In addition, allele-specific siRNAs against the p.S619L DNM2 mutation, a mutation frequently associated with severe neonatal cases, were developed. The beneficial effects of these new siRNAs are reported for a panel of defects occurring in patient-derived cell lines. The development of these new molecules allows targeting the large majority of the patients harboring DNM2 mutations or overexpression by only a few siRNAs.
ABSTRACT
Dominant dynamin 2 (DNM2) mutations are responsible for the autosomal dominant centronuclear myopathy (AD-CNM), a rare progressive neuromuscular disorder ranging from severe neonatal to mild adult forms. We previously demonstrated that mutant-specific RNA interference is an efficient therapeutic strategy to rescue the muscle phenotype at the onset of the symptoms in the AD-CNM knockin-Dnm2 R465W/+ mouse model. Our objective was to evaluate the long-term benefit of the treatment along with the disease time course. We demonstrate here that the complete rescue of the muscle phenotype is maintained for at least 1 year after a single injection of adeno-associated virus expressing the mutant-specific short hairpin RNA (shRNA). This was achieved by a maintained reduction of the mutant Dnm2 transcript. Moreover, this long-term study uncovers a pathological accumulation of DNM2 protein occurring with age in the mouse model and prevented by the treatment. Conversely, a physiological DNM2 protein decrease with age was observed in muscles from wild-type mice. Therefore, this study highlights a new potential pathophysiological mechanism linked to mutant protein accumulation and underlines the importance of DNM2 protein expression level for proper muscle function. Overall, these results strengthen the allele-specific silencing approach as a robust, safe, and efficient therapy for AD-CNM.
ABSTRACT
Duchenne muscular dystrophy is a severe neuromuscular disease causing a progressive muscle wasting due to mutations in the DMD gene that lead to the absence of dystrophin protein. Adeno-associated virus (AAV)-based therapies aiming to restore dystrophin in muscles, by either exon skipping or microdystrophin expression, are very promising. However, the absence of dystrophin induces cellular perturbations that hinder AAV therapy efficiency. We focused here on the impact of the necrosis-regeneration process leading to nuclear centralization in myofiber, a common feature of human myopathies, on AAV transduction efficiency. We generated centronucleated myofibers by cardiotoxin injection in wild-type muscles prior to AAV injection. Intramuscular injections of AAV1 vectors show that transgene expression was drastically reduced in regenerated muscles, even when the AAV injection occurred 10 months post-regeneration. We show also that AAV genomes were not lost from cardiotoxin regenerated muscle and were properly localised in the myofiber nuclei but were less transcribed leading to muscle transduction defect. A similar defect was observed in muscles of the DMD mouse model mdx. Therefore, the regeneration process per se could participate to the AAV-mediated transduction defect observed in dystrophic muscles which may limit AAV-based therapies.
Subject(s)
Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Animals , Cardiotoxins/pharmacology , Dependovirus/genetics , Dependovirus/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Genetic Therapy , Genetic Vectors/genetics , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Regeneration/genetics , TransgenesABSTRACT
Dynamin 2 (DNM2) is an ubiquitously expressed large GTPase well known for its role in vesicle formation in endocytosis and intracellular membrane trafficking also acting as a regulator of cytoskeletons. During the last two decades, DNM2 involvement, through mutations or overexpression, emerged in an increasing number of cancers and often associated with poor prognosis. A wide panel of DNM2-dependent processes was described in cancer cells which explains DNM2 contribution to cancer pathomechanisms. First, DNM2 dysfunction may promote cell migration, invasion and metastasis. Second, DNM2 acts on intracellular signaling pathways fostering tumor cell proliferation and survival. Relative to these roles, DNM2 was demonstrated as a therapeutic target able to reduce cell proliferation, induce apoptosis, and reduce the invasive phenotype in a wide range of cancer cells in vitro. Moreover, proofs of concept of therapy by modulation of DNM2 expression was also achieved in vivo in several animal models. Consequently, DNM2 appears as a promising molecular target for the development of anti-invasive agents and the already provided proofs of concept in animal models represent an important step of preclinical development.
Subject(s)
Dynamin II/metabolism , Neoplasms/genetics , Animals , Cell Movement , Cell Proliferation , Disease Models, Animal , Humans , Mice , Neoplasm Metastasis , Neoplasms/mortality , Survival AnalysisABSTRACT
Vici syndrome is a rare, genetically unresolved congenital multisystem disorder comprising agenesis of the corpus callosum, cataracts, immunodeficiency, cardiomyopathy, and hypopigmentation. An associated neuromuscular phenotype has not previously been described in detail. We report on an infant with clinical features suggestive of Vici syndrome and additional sensorineural hearing loss. Muscle biopsy revealed several changes including markedly increased variability in fiber size, increased internal nuclei, and abnormalities on Gomori trichrome and oxidative stains, raising a wide differential diagnosis including neurogenic atrophy, centronuclear myopathy (CNM) or a metabolic (mitochondrial) cytopathy. Respiratory chain enzyme studies, however, were normal and sequencing of common CNM-associated genes did not reveal any mutations. This case expands the clinical spectrum of Vici syndrome and indicates that muscle biopsy ought to be considered in infants presenting with suggestive clinical features. In addition, we suggest that Vici syndrome is considered in the differential diagnosis of infants presenting with congenital callosal agenesis and that additional investigation has to address the possibility of associated ocular, auditory, cardiac, and immunologic involvement when this radiologic finding is present.
Subject(s)
Abnormalities, Multiple/genetics , Acrocallosal Syndrome/genetics , Hearing Loss, Sensorineural/genetics , Muscle, Skeletal/pathology , Cataract/genetics , Humans , Hypopigmentation/genetics , Infant , Male , Muscle, Skeletal/innervation , SyndromeABSTRACT
Autophagy involves engulfment of cytoplasmic contents by double-membraned autophagosomes, which ultimately fuse with lysosomes to enable degradation of their substrates. We recently proposed that the tubular-vesicular recycling endosome membranes were a core platform on which the critical early events of autophagosome formation occurred, including LC3-membrane conjugation to autophagic precursors. Here, we report that the release of autophagosome precursors from recycling endosomes is mediated by DNM2-dependent scission of these tubules. This process is regulated by DNM2 binding to LC3 and is increased by autophagy-inducing stimuli. This scission is defective in cells expressing a centronuclear-myopathy-causing DNM2 mutant. This mutant has an unusual mechanism as it depletes normal-functioning DNM2 from autophagosome formation sites on recycling endosomes by causing increased binding to an alternative plasma membrane partner, ITSN1. This "scission" step is, thus, critical for autophagosome formation, is defective in a human disease, and influences the way we consider how autophagosomes are formed.