Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 103(5): 052501, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19792492

ABSTRACT

Isospin symmetry breaking has been investigated in mass A=67 mirror nuclei through the experimental determination of the E1 strengths of analog electromagnetic transitions. Lifetimes of excited states have been measured in (67)Se and (67)As with the centroid shift method. Through the comparison of the B(E1) strengths of the mirror 9/2(+)-->7/2(-) transitions, the isovector and the isoscalar components of the electromagnetic transition amplitude were extracted. The presence of a large isoscalar component provides evidence for coherent contributions to isospin mixing, probably involving the isovector giant monopole resonance.

2.
Phys Rev Lett ; 102(24): 242502, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19659003

ABSTRACT

The lifetimes of the first excited states of the N = 30 isotones (50)Ca and (51)Sc have been determined using the Recoil Distance Doppler Shift method in combination with the CLARA-PRISMA spectrometers. This is the first time such a method is applied to measure lifetimes of neutron-rich nuclei populated via a multinucleon transfer reaction. This extends the lifetime knowledge beyond the f_{7/2} shell closure and allows us to derive the effective proton and neutron charges in the fp shell near the doubly magic nucleus (48)Ca, using large-scale, shell-model calculations. These results indicate an orbital dependence of the core polarization along the fp shell.

3.
Phys Rev Lett ; 87(12): 122501, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11580500

ABSTRACT

Gamma rays from the N = Z-2 nucleus (50)Fe have been observed, establishing the rotational ground state band up to the state J(pi) = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror (50)Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs. A quantitative agreement with experiment has been achieved by exact shell model calculations, incorporating the differences in radii along the yrast bands, and properly renormalizing the Coulomb matrix elements in the pf model space.

SELECTION OF CITATIONS
SEARCH DETAIL