Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nature ; 611(7937): 727-732, 2022 11.
Article in English | MEDLINE | ID: mdl-36352226

ABSTRACT

Over the past two decades, ice loss from the Greenland ice sheet (GrIS) has increased owing to enhanced surface melting and ice discharge to the ocean1-5. Whether continuing increased ice loss will accelerate further, and by how much, remains contentious6-9. A main contributor to future ice loss is the Northeast Greenland Ice Stream (NEGIS), Greenland's largest basin and a prominent feature of fast-flowing ice that reaches the interior of the GrIS10-12. Owing to its topographic setting, this sector is vulnerable to rapid retreat, leading to unstable conditions similar to those in the marine-based setting of ice streams in Antarctica13-20. Here we show that extensive speed-up and thinning triggered by frontal changes in 2012 have already propagated more than 200 km inland. We use unique global navigation satellite system (GNSS) observations, combined with surface elevation changes and surface speeds obtained from satellite data, to select the correct basal conditions to be used in ice flow numerical models, which we then use for future simulations. Our model results indicate that this marine-based sector alone will contribute 13.5-15.5 mm sea-level rise by 2100 (equivalent to the contribution of the entire ice sheet over the past 50 years) and will cause precipitous changes in the coming century. This study shows that measurements of subtle changes in the ice speed and elevation inland help to constrain numerical models of the future mass balance and higher-end projections show better agreement with observations.

2.
Nature ; 600(7887): 86-92, 2021 12.
Article in English | MEDLINE | ID: mdl-34671161

ABSTRACT

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Subject(s)
Biota , DNA, Ancient/analysis , DNA, Environmental/analysis , Metagenomics , Animals , Arctic Regions , Climate Change/history , Databases, Genetic , Datasets as Topic , Extinction, Biological , Geologic Sediments , Grassland , Greenland , Haplotypes/genetics , Herbivory/genetics , History, Ancient , Humans , Lakes , Mammoths , Mitochondria/genetics , Perissodactyla , Permafrost , Phylogeny , Plants/genetics , Population Dynamics , Rain , Siberia , Spatio-Temporal Analysis , Wetlands
3.
Nature ; 550(7674): 101-104, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28980627

ABSTRACT

Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coastal zone. For example, increases in melting of the Greenland Ice Sheet and reductions in sea ice and permafrost distribution are likely to alter coastal morphodynamics. The deltas of Greenland are largely unaffected by human activity, but increased freshwater runoff and sediment fluxes may increase the size of the deltas, whereas increased wave activity in ice-free periods could reduce their size, with the net impact being unclear until now. Here we show that southwestern Greenland deltas were largely stable from the 1940s to 1980s, but prograded (that is, sediment deposition extended the delta into the sea) in a warming Arctic from the 1980s to 2010s. Our results are based on the areal changes of 121 deltas since the 1940s, assessed using newly discovered aerial photographs and remotely sensed imagery. We find that delta progradation was driven by high freshwater runoff from the Greenland Ice Sheet coinciding with periods of open water. Progradation was controlled by the local initial environmental conditions (that is, accumulated air temperatures above 0 °C per year, freshwater runoff and sea ice in the 1980s) rather than by local changes in these conditions from the 1980s to 2010s at each delta. This is in contrast to a dominantly eroding trend of Arctic sedimentary coasts along the coastal plains of Alaska, Siberia and western Canada, and to the spatially variable patterns of erosion and accretion along the large deltas of the main rivers in the Arctic. Our results improve the understanding of Arctic coastal evolution in a changing climate, and reveal the impacts on coastal areas of increasing ice mass loss and the associated freshwater runoff and lengthening of open-water periods.

7.
Geophys Res Lett ; 49(5): e2021GL097320, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35866066

ABSTRACT

Storstrømmen and L. Bistrup Bræ are 20- and 10-km wide, surge type glaciers in North Greenland in quiescent phase that terminate in the southernmost floating ice tongue in East Greenland. Novel multi-beam echo sounding data collected in August 2020 indicate a seabed at 350-400 m depth along a relatively uniform ice shelf front, 100 m deeper than expected, but surrounded by shallower terrain (<100 m) over a 30-km wide region that blocks the access of warm, salty, subsurface Atlantic Intermediate Water (AIW) at +1.6°C. Conductivity temperature depth data reveal waters in front of the glaciers at -1.8°C not connected to AIW in the outer fjord, Dove Bugt. The recent grounding line retreat of the glaciers is attributed to glacier thinning at its ablation rate, with little influence of ocean waters, which illustrates the fundamental importance of knowing the bathymetry of glacial fjords.

8.
Geophys Res Lett ; 49(12): e2022GL098915, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35865910

ABSTRACT

In recent decades, Greenland's peripheral glaciers have experienced large-scale mass loss, resulting in a substantial contribution to sea level rise. While their total area of Greenland ice cover is relatively small (4%), their mass loss is disproportionally large compared to the Greenland ice sheet. Satellite altimetry from Ice, Cloud, and land Elevation Satellite (ICESat) and ICESat-2 shows that mass loss from Greenland's peripheral glaciers increased from 27.2 ± 6.2 Gt/yr (February 2003-October 2009) to 42.3 ± 6.2 Gt/yr (October 2018-December 2021). These relatively small glaciers now constitute 11 ± 2% of Greenland's ice loss and contribute to global sea level rise. In the period October 2018-December 2021, mass loss increased by a factor of four for peripheral glaciers in North Greenland. While peripheral glacier mass loss is widespread, we also observe a complex regional pattern where increases in precipitation at high altitudes have partially counteracted increases in melt at low altitude.

9.
Proc Natl Acad Sci U S A ; 116(19): 9239-9244, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31010924

ABSTRACT

We reconstruct the mass balance of the Greenland Ice Sheet using a comprehensive survey of thickness, surface elevation, velocity, and surface mass balance (SMB) of 260 glaciers from 1972 to 2018. We calculate mass discharge, D, into the ocean directly for 107 glaciers (85% of D) and indirectly for 110 glaciers (15%) using velocity-scaled reference fluxes. The decadal mass balance switched from a mass gain of +47 ± 21 Gt/y in 1972-1980 to a loss of 51 ± 17 Gt/y in 1980-1990. The mass loss increased from 41 ± 17 Gt/y in 1990-2000, to 187 ± 17 Gt/y in 2000-2010, to 286 ± 20 Gt/y in 2010-2018, or sixfold since the 1980s, or 80 ± 6 Gt/y per decade, on average. The acceleration in mass loss switched from positive in 2000-2010 to negative in 2010-2018 due to a series of cold summers, which illustrates the difficulty of extrapolating short records into longer-term trends. Cumulated since 1972, the largest contributions to global sea level rise are from northwest (4.4 ± 0.2 mm), southeast (3.0 ± 0.3 mm), and central west (2.0 ± 0.2 mm) Greenland, with a total 13.7 ± 1.1 mm for the ice sheet. The mass loss is controlled at 66 ± 8% by glacier dynamics (9.1 mm) and 34 ± 8% by SMB (4.6 mm). Even in years of high SMB, enhanced glacier discharge has remained sufficiently high above equilibrium to maintain an annual mass loss every year since 1998.

10.
Nature ; 528(7582): 396-400, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26672555

ABSTRACT

The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.


Subject(s)
Climate Change/statistics & numerical data , Ice Cover , Spatio-Temporal Analysis , Greenland , History, 20th Century , History, 21st Century , Models, Theoretical , Observation , Photography , Reproducibility of Results , Seawater/analysis , Temperature
11.
Water Sci Technol ; 83(6): 1335-1346, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767040

ABSTRACT

This study highlights the need to increase our understanding of the interplay between sensor drift and the performance of the automatic control system. The impact from biased sensors on the automatic control systems is rarely considered when different control strategies are assessed in water resource recovery facilities. Still, the harsh measurement environment with negative effects on sensor data quality is widely acknowledged. Simulations were used to show how sensor bias in an ammonium cascade feedback controller impacts aeration energy efficiency and total nitrogen removal in an activated sludge process. Response surface methodology was used to reduce the required number of simulations, and to consider the combined effect of two simultaneously biased sensors. The effects from flow variations, and negatively biased ammonium (-1 mg/L) and suspended solids sensors (-500 mg/L) reduced the nitrification aeration energy efficiency by between 7 and 25%. Less impact was seen on total nitrogen removal. There were no added non-linear effects from the two simultaneously biased sensors, apart from an interaction between a biased ammonium sensor and dissolved oxygen sensor located in the last aerated zone. Negative effects from sensor bias can partly be limited if the expected bias direction is considered when the controller setpoint-limits are defined.


Subject(s)
Oxygen , Waste Disposal, Fluid , Bioreactors , Nitrification , Nitrogen , Oxygen/analysis , Sewage
12.
Water Sci Technol ; 78(5-6): 1034-1044, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30339528

ABSTRACT

Biofilm fouling is known to impact the data quality of sensors, but little is known about the exact effects. We studied the effects of artificial and real biofilm fouling on dissolved oxygen (DO) sensors in full-scale water resource recovery facilities, and how this can automatically be detected. Biofilm fouling resulted in different drift direction and bias magnitudes for optical (OPT) and electrochemical (MEC) DO sensors. The OPT-sensor was more affected by biofilm fouling compared to the MEC-sensor, especially during summer conditions. A bias of 1 mg/L was detected by analysing the impulse response (IR) of the automatic air cleaning system in the DO sensor. The IR is an effect of a temporal increase in DO concentration during the automatic air cleaning. The IRs received distinct pattern changes that were matched with faults including: biofilm fouling, disturbances in the air supply to the cleaning system, and damaged sensor membrane, which can be used for fault diagnosis. The results highlight the importance of a condition-based sensor maintenance schedule in contrast to fixed cleaning intervals. Further, the results stress the importance of understanding and detecting bias due to biofilm fouling, in order to maintain a robust and resource-efficient process control.


Subject(s)
Biofilms , Biofouling , Membranes, Artificial , Oxygen , Bioreactors , Electrochemical Techniques , Optical Devices , Waste Disposal, Fluid , Water Purification
13.
Water Sci Technol ; 75(12): 2952-2963, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28659535

ABSTRACT

Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.


Subject(s)
Waste Disposal, Fluid/methods , Wastewater/statistics & numerical data , Environmental Monitoring/methods , Monte Carlo Method , Normal Distribution , Waste Disposal, Fluid/statistics & numerical data
14.
Rep Prog Phys ; 78(4): 046801, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811969

ABSTRACT

Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

15.
Nat Protoc ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075310

ABSTRACT

This paper introduces a comprehensive protocol leveraging open-access techniques to create small- to medium-scale 3D representations of the environment by using iPhone and iPad light detection and ranging (LiDAR). The protocol focuses on two capabilities of the iPhone LiDAR. The first capability is 3D modeling: iPhone LiDAR rapidly generates detailed indoor and outdoor 3D models, providing insights into object size, volume and geometry. The second capability is change detection: the 3D models created by the LiDAR sensor can be used for precise measurement of changes over time. Compared to other 3D topographic surveying methods, this method is rapid, high resolution, low cost and easy to use. The protocol outlines iPhone LiDAR scanning practices, model export and change detection. The expected results after executing the protocol are (i) a detailed 3D model of a small- to medium-sized object or area of interest and (ii) a distance point cloud revealing change between two point clouds of the same object or area between different times. The entire protocol can be conducted within 2 h by anyone with an iPhone with the LiDAR sensor and a computer. This protocol empowers scientists, students and community members conducting research with a cheap, easy-to-use method for addressing a range of questions and challenges, thus benefiting experts and the broader community.

16.
Nat Commun ; 15(1): 4466, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796492

ABSTRACT

During the last few decades, several sectors in Antarctica have transitioned from glacial mass balance equilibrium to mass loss. In order to determine if recent trends exceed the scale of natural variability, long-term observations are vital. Here we explore the earliest, large-scale, aerial image archive of Antarctica to provide a unique record of 21 outlet glaciers along the coastline of East Antarctica since the 1930s. In Lützow-Holm Bay, our results reveal constant ice surface elevations since the 1930s, and indications of a weakening of local land-fast sea-ice conditions. Along the coastline of Kemp and Mac Robertson, and Ingrid Christensen Coast, we observe a long-term moderate thickening of the glaciers since 1937 and 1960 with periodic thinning and decadal variability. In all regions, the long-term changes in ice thickness correspond with the trends in snowfall since 1940. Our results demonstrate that the stability and growth in ice elevations observed in terrestrial basins over the past few decades are part of a trend spanning at least a century, and highlight the importance of understanding long-term changes when interpreting current dynamics.

17.
Nat Commun ; 15(1): 1332, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351087

ABSTRACT

Sediment discharged from the Greenland Ice Sheet delivers nutrients to marine ecosystems around Greenland and shapes seafloor habitats. Current estimates of the total sediment flux are constrained by observations from land-terminating glaciers only. Addressing this gap, our study presents a budget derived from observations at 30 marine-margin locations. Analyzing sediment cores from nine glaciated fjords, we assess spatial deposition since 1950. A significant correlation is established between mass accumulation rates, normalized by surface runoff, and distance down-fjord. This enables calculating annual sediment flux at any fjord point based on nearby marine-terminating outlet glacier melt data. Findings reveal a total annual sediment flux of 1.324 + /- 0.79 Gt yr-1 over the period 2010-2020 from all marine-terminating glaciers to the fjords. These estimates are valuable for studies aiming to understand the basal ice sheet conditions and for studies predicting ecosystem changes in Greenland's fjords and offshore areas as the ice sheet melts and sediment discharge increase.

18.
Water Res ; 229: 119338, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36442269

ABSTRACT

Sensors used for control have become widespread in water resources recovery facilities during the strive for resource efficient operations. However, their accuracy is reliant on uncertain laboratory measurements, which are used for calibration and, in turn, to correct for sensor drift. At the same time, current sensor calibration practices are lacking clear theoretical understanding of how measurement uncertainties impact the final control action. The effects of a customarily, and ad hoc, applied calibration threshold are unknown, leading to the current situation where many wastewater treatment processes are controlled by measurements with unknown accuracy. To study how sensor accuracy is affected by calibration, including varying calibration thresholds, we developed a simple theoretical model with closed-form expressions based on the variance and bias in sensor and laboratory measurements. The model was then simulated to yield the results, which showed no practical gain of using a calibration threshold, apart from the situation when calibration is more time-consuming than validation. By contrast, the best accuracy was obtained when consistently executing calibration, which opposes common practice. Further, the sensor calibration error was shown to be transferred to the process, causing a similar deviation from the setpoint when the same sensor was used for control. This emphasizes the importance of minimizing laboratory measurement uncertainties during calibration, which otherwise directly impact operations. Due to these findings we strongly advice shifting mindset from considering calibration as a sequential detection and correction approach, towards an estimation approach, aiming to estimate bias magnitude and drift speed.


Subject(s)
Models, Theoretical , Calibration , Bias
19.
PLoS Biol ; 7(4): e97, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19402754

ABSTRACT

Despite more than 25 years of research, the molecular targets of quinoline-3-carboxamides have been elusive although these compounds are currently in Phase II and III development for treatment of autoimmune/inflammatory diseases in humans. Using photoaffinity cross-linking of a radioactively labelled quinoline-3-carboxamide compound, we could determine a direct association between human S100A9 and quinoline-3-carboxamides. This interaction was strictly dependent on both Zn++ and Ca++. We also show that S100A9 in the presence of Zn++ and Ca++ is an efficient ligand of receptor for advanced glycation end products (RAGE) and also an endogenous Toll ligand in that it shows a highly specific interaction with TLR4/MD2. Both these interactions are inhibited by quinoline-3-carboxamides. A clear structure-activity relationship (SAR) emerged with regard to the binding of quinoline-3-carboxamides to S100A9, as well as these compounds potency to inhibit interactions with RAGE or TLR4/MD2. The same SAR was observed when the compound's ability to inhibit acute experimental autoimmune encephalomyelitis in mice in vivo was analysed. Quinoline-3-carboxamides would also inhibit TNFalpha release in a S100A9-dependent model in vivo, as would antibodies raised against the quinoline-3-carboxamide-binding domain of S100A9. Thus, S100A9 appears to be a focal molecule in the control of autoimmune disease via its interactions with proinflammatory mediators. The specific binding of quinoline-3-carboxamides to S100A9 explains the immunomodulatory activity of this class of compounds and defines S100A9 as a novel target for treatment of human autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Calgranulin B/metabolism , Immunologic Factors/pharmacology , Inflammation/metabolism , Quinolines/metabolism , Receptors, Immunologic/metabolism , Toll-Like Receptor 4/metabolism , Animals , Autoimmune Diseases/metabolism , Calcium/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/adverse effects , Lymphocyte Antigen 96/metabolism , Mice , Mice, Knockout , Monocytes/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/therapeutic use , Receptor for Advanced Glycation End Products , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Zinc/metabolism
20.
Sci Adv ; 8(10): eabm2434, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35263140

ABSTRACT

The ~31-km-wide Hiawatha structure, located beneath Hiawatha Glacier in northwestern Greenland, has been proposed as an impact structure that may have formed after the Pleistocene inception of the Greenland Ice Sheet. To date the structure, we conducted 40Ar/39Ar analyses on glaciofluvial sand and U-Pb analyses on zircon separated from glaciofluvial pebbles of impact melt rock, all sampled immediately downstream of Hiawatha Glacier. Unshocked zircon in the impact melt rocks dates to ~1915 million years (Ma), consistent with felsic intrusions found in local bedrock. The 40Ar/39Ar data indicate Late Paleocene resetting and shocked zircon dates to 57.99 ± 0.54 Ma, which we interpret as the impact age. Consequently, the Hiawatha impact structure far predates Pleistocene glaciation and is unrelated to either the Paleocene-Eocene Thermal Maximum or flood basalt volcanism in east Greenland. However, it was contemporaneous with the Paleocene Carbon Isotope Maximum, although the impact's exact paleoenvironmental and climatic significance awaits further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL