Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Publication year range
1.
Methods ; 191: 68-77, 2021 07.
Article in English | MEDLINE | ID: mdl-33582298

ABSTRACT

Validation of CRISPR-Cas9 editing typically explores the immediate vicinity of the gene editing site and distal off-target sequences, which has led to the conclusion that CRISPR-Cas9 editing is very specific. However, an increasing number of studies suggest that on-target unintended editing events like deletions and insertions are relatively frequent but unfortunately often missed in the validation of CRISPR-Cas9 editing. The deletions may be several kilobases-long and only affect one allele. The gold standard in molecular validation of gene editing is direct sequencing of relatively short PCR amplicons. This approach allows the detection of small editing events but fails in detecting large rearrangements, in particular when only one allele is affected. Detection of large rearrangements requires that an extended region is analyzed and the characterization of events may benefit from long-read sequencing. Here we implemented Xdrop™, a new microfluidic technology that allows targeted enrichment of long regions (~100 kb) using just a single standard PCR primer set. Sequencing of the enriched CRISPR-Cas9 gene-edited region in four cell lines on long- and short-read sequencing platforms unravelled unknown and unintended genome editing events. The analysis revealed accidental kilobases-large insertions in three of the cell lines, which remained undetected using standard procedures. We also applied the targeted enrichment approach to identify the integration site of a transgene in a mouse line. The results demonstrate the potential of this technology in gene editing validation as well as in more classic transgenics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Mice
2.
Nephrol Dial Transplant ; 35(12): 2059-2072, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32853351

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, affecting ∼30% of the rapidly growing diabetic population, and strongly associated with cardiovascular risk. Despite this, the molecular mechanisms of disease remain unknown. METHODS: RNA sequencing (RNAseq) was performed on paired, micro-dissected glomerular and tubulointerstitial tissue from patients diagnosed with DN [n = 19, 15 males, median (range) age: 61 (30-85) years, chronic kidney disease stages 1-4] and living kidney donors [n = 20, 12 males, median (range) age: 56 (30-70) years]. RESULTS: Principal component analysis showed a clear separation between glomeruli and tubulointerstitium transcriptomes. Differential expression analysis identified 1550 and 4530 differentially expressed genes, respectively (adjusted P < 0.01). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses highlighted activation of inflammation and extracellular matrix (ECM) organization pathways in glomeruli, and immune and apoptosis pathways in tubulointerstitium of DN patients. Specific gene modules were associated with renal function in weighted gene co-expression network analysis. Increased messengerRNA (mRNA) expression of renal damage markers lipocalin 2 (LCN) and hepatitis A virus cellular receptor1 (HAVCR1) in the tubulointerstitial fraction was observed alongside higher urinary concentrations of the corresponding proteins neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in DN patients. CONCLUSIONS: Here we present the first RNAseq experiment performed on paired glomerular and tubulointerstitial samples from DN patients. We show that prominent disease-specific changes occur in both compartments, including relevant cellular processes such as reorganization of ECM and inflammation (glomeruli) as well as apoptosis (tubulointerstitium). The results emphasize the potential of utilizing high-throughput transcriptomics to decipher disease pathways and treatment targets in this high-risk patient population.


Subject(s)
Biomarkers/analysis , Diabetes Mellitus/physiopathology , Diabetic Nephropathies/genetics , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Transcriptome , Adult , Aged , Aged, 80 and over , Computational Biology/methods , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/pathology , Female , Hepatitis A Virus Cellular Receptor 1/genetics , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Kidney Function Tests , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Lipocalin-2/genetics , Lipocalin-2/metabolism , Male , Middle Aged , Sweden/epidemiology
3.
Nat Genet ; 39(8): 977-83, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17603485

ABSTRACT

We performed a genome-wide association scan to search for sequence variants conferring risk of prostate cancer using 1,501 Icelandic men with prostate cancer and 11,290 controls. Follow-up studies involving three additional case-control groups replicated an association of two variants on chromosome 17 with the disease. These two variants, 33 Mb apart, fall within a region previously implicated by family-based linkage studies on prostate cancer. The risks conferred by these variants are moderate individually (allele odds ratio of about 1.20), but because they are common, their joint population attributable risk is substantial. One of the variants is in TCF2 (HNF1beta), a gene known to be mutated in individuals with maturity-onset diabetes of the young type 5. Results from eight case-control groups, including one West African and one Chinese, demonstrate that this variant confers protection against type 2 diabetes.


Subject(s)
Chromosomes, Human, Pair 17 , Diabetes Mellitus, Type 2/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Prostatic Neoplasms/genetics , Case-Control Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide
4.
Nat Genet ; 39(5): 631-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17401366

ABSTRACT

Prostate cancer is the most prevalent noncutaneous cancer in males in developed regions, with African American men having among the highest worldwide incidence and mortality rates. Here we report a second genetic variant in the 8q24 region that, in conjunction with another variant we recently discovered, accounts for about 11%-13% of prostate cancer cases in individuals of European descent and 31% of cases in African Americans. We made the current discovery through a genome-wide association scan of 1,453 affected Icelandic individuals and 3,064 controls using the Illumina HumanHap300 BeadChip followed by four replication studies. A key step in the discovery was the construction of a 14-SNP haplotype that efficiently tags a relatively uncommon (2%-4%) susceptibility variant in individuals of European descent that happens to be very common (approximately 42%) in African Americans. The newly identified variant shows a stronger association with affected individuals who have an earlier age at diagnosis.


Subject(s)
Chromosomes, Human, Pair 8/genetics , Genetic Linkage , Genetic Predisposition to Disease/genetics , Genetic Variation , Prostatic Neoplasms/genetics , Black or African American , Europe , Genomics/methods , Haplotypes/genetics , Humans , Male , Polymorphism, Single Nucleotide , United States , White People
5.
Nat Genet ; 38(6): 652-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16682969

ABSTRACT

With the increasing incidence of prostate cancer, identifying common genetic variants that confer risk of the disease is important. Here we report such a variant on chromosome 8q24, a region initially identified through a study of Icelandic families. Allele -8 of the microsatellite DG8S737 was associated with prostate cancer in three case-control series of European ancestry from Iceland, Sweden and the US. The estimated odds ratio (OR) of the allele is 1.62 (P = 2.7 x 10(-11)). About 19% of affected men and 13% of the general population carry at least one copy, yielding a population attributable risk (PAR) of approximately 8%. The association was also replicated in an African American case-control group with a similar OR, in which 41% of affected individuals and 30% of the population are carriers. This leads to a greater estimated PAR (16%) that may contribute to higher incidence of prostate cancer in African American men than in men of European ancestry.


Subject(s)
Black People/genetics , Prostatic Neoplasms/genetics , White People/genetics , Alleles , Humans , Male , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide
6.
J Transl Med ; 12: 254, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25199818

ABSTRACT

BACKGROUND: Angiogenesis plays a pivotal role in malignant tumour growth and the metastatic process. We analysed the prognostic value of two angiogenesis parameters, microRNA-126 (miRNA-126) and microvessel density (MVD), in a population based cohort of patients operated for stage II colon cancer. METHODS: A total of 560 patients were included. Analyses were performed on formalin fixed paraffin embedded tissue from the primary tumours. The analysis of miRNA-126 expression was performed by qPCR. Microvessels were visualised by CD105 and quantified in hot spots using a light microscope. The analyses were correlated with recurrence-free cancer specific survival (RF-CSS) and overall survival (OS). RESULTS: Low miRNA-126 expression was significantly correlated to T4, high malignancy grade, tumour perforation, fixation, and the presence of microsatellite instability. A prognostic impact on OS was detected in the simple analysis favouring patients with high miRNA-126 expression p = 0.03, and borderline significance as to RF-CSS, p = 0.08. The impact on OS demonstrated borderline significance in a following multiple Cox regression analysis, hazard ratio 0.76 (95% confidence interval, 0.58-1.00), p = 0.051. The MVD estimate was not associated with either RF-CSS, p = 0.49, or OS, p = 0.94. CONCLUSION: The current population based study of patients operated for stage II colon cancer demonstrated correlations between several prognostic unfavourable characteristics and miRNA-126 and argues for a possible prognostic impact on overall survival. An influence on survival by the MVD estimate was not detected.


Subject(s)
Colonic Neoplasms/blood supply , Colonic Neoplasms/genetics , MicroRNAs/physiology , Microvessels , Aged , Cohort Studies , Female , Humans , Male , Neovascularization, Pathologic , Prognosis , Survival Analysis
7.
Methods ; 59(1): S1-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23036329

ABSTRACT

MicroRNAs (miRNAs) constitute a class of small cellular RNAs (typically 21-23nt) that function as post-transcriptional regulators of gene expression. Current estimates indicate that more than one third of the cellular transcriptome is regulated by miRNAs, although they are relatively few in number (less than 2000 human miRNAs). The high relative stability of miRNA in common clinical tissues and biofluids (e.g. plasma, serum, urine, saliva, etc.) and the ability of miRNA expression profiles to accurately classify discrete tissue types and disease states have positioned miRNA quantification as a promising new tool for a wide range of diagnostic applications. Furthermore miRNAs have been shown to be rapidly released from tissues into the circulation with the development of pathology. To facilitate discovery and clinical development of miRNA-based biomarkers, we developed a genome-wide Locked Nucleic Acid (LNA™)-based miRNA qPCR platform with unparalleled sensitivity and robustness. The platform allows high-throughput profiling of miRNAs from important clinical sources without the need for pre-amplification. Using this system, we have profiled thousands of biofluid samples including blood derived plasma and serum. An extensive quality control (QC) system has been implemented in order to secure technical excellence and reveal any unwanted bias coming from pre-analytical or analytical variables. We present our approaches to sample and RNA QC as well as data QC and normalization. Specifically we have developed normal reference ranges for circulating miRNAs in serum and plasma as well as a hemolysis indicator based on microRNA expression.


Subject(s)
Blood Chemical Analysis/methods , MicroRNAs/blood , Biomarkers/blood , Blood Chemical Analysis/standards , Hemolysis , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Oligonucleotides , Plasma/metabolism , Quality Control , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Reference Values , Reverse Transcriptase Polymerase Chain Reaction/standards , Serum/metabolism
8.
Nature ; 455(7210): 232-6, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18668039

ABSTRACT

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


Subject(s)
Genetic Predisposition to Disease/genetics , Schizophrenia/genetics , Sequence Deletion/genetics , China , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 15/genetics , Europe , Gene Dosage/genetics , Genome, Human/genetics , Genotype , Humans , Loss of Heterozygosity , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics
9.
Nature ; 448(7151): 353-7, 2007 Jul 19.
Article in English | MEDLINE | ID: mdl-17603472

ABSTRACT

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans and is characterized by chaotic electrical activity of the atria. It affects one in ten individuals over the age of 80 years, causes significant morbidity and is an independent predictor of mortality. Recent studies have provided evidence of a genetic contribution to AF. Mutations in potassium-channel genes have been associated with familial AF but account for only a small fraction of all cases of AF. We have performed a genome-wide association scan, followed by replication studies in three populations of European descent and a Chinese population from Hong Kong and find a strong association between two sequence variants on chromosome 4q25 and AF. Here we show that about 35% of individuals of European descent have at least one of the variants and that the risk of AF increases by 1.72 and 1.39 per copy. The association with the stronger variant is replicated in the Chinese population, where it is carried by 75% of individuals and the risk of AF is increased by 1.42 per copy. A stronger association was observed in individuals with typical atrial flutter. Both variants are adjacent to PITX2, which is known to have a critical function in left-right asymmetry of the heart.


Subject(s)
Atrial Fibrillation/genetics , Chromosomes, Human, Pair 4/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Age Distribution , Aged , Aged, 80 and over , Asian People/genetics , Atrial Fibrillation/diagnosis , Female , Gene Frequency , Genome, Human/genetics , Haplotypes/genetics , Hong Kong , Humans , Iceland , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sweden , United States , White People/genetics
10.
Oncotarget ; 9(10): 9043-9060, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29507673

ABSTRACT

Colorectal cancer (CRC) is a leading cause of death worldwide. Surgical intervention is a successful treatment for stage I patients, whereas other more advanced cases may require adjuvant chemotherapy. The selection of effective adjuvant treatments remains, however, challenging. Accurate patient stratification is necessary for the identification of the subset of patients likely responding to treatment, while sparing others from pernicious treatment. Targeted sequencing approaches may help in this regard, enabling rapid genetic investigation, and at the same time easily applicable in routine diagnosis. We propose a set of guidelines for the identification, including variant calling and filtering, of somatic mutations driving tumorigenesis in the absence of matched healthy tissue. We also discuss the inclusion criteria for the generation of our gene panel. Furthermore, we evaluate the prognostic impact of individual genes, using Cox regression models in the context of overall survival and disease-free survival. These analyses confirmed the role of commonly used biomarkers, and shed light on controversial genes such as CYP2C8. Applying those guidelines, we created a novel gene panel to investigate the onset and progression of CRC in 273 patients. Our comprehensive biomarker set includes 266 genes that may play a role in the progression through the different stages of the disease. Tracing the developmental state of the tumour, and its resistances, is instrumental in patient stratification and reliable decision making in precision clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL