Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753510

ABSTRACT

Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30-45%.


Subject(s)
Biosensing Techniques , Carbon-13 Magnetic Resonance Spectroscopy , Fumarates/isolation & purification , Fumarates/metabolism , Molecular Imaging/methods , Water/chemistry , Solutions
2.
Sci Rep ; 14(1): 7879, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570608

ABSTRACT

Achieving non-invasive spatiotemporal control over cellular functions, tissue organization, and behavior is a desirable aim for advanced therapies. Magnetic fields, due to their negligible interaction with biological matter, are promising for in vitro and in vivo applications, even in deep tissues. Particularly, the remote manipulation of paramagnetic (including superparamagnetic and ferromagnetic, all with a positive magnetic susceptibility) entities through magnetic instruments has emerged as a promising approach across various biological contexts. However, variations in the properties and descriptions of these instruments have led to a lack of reproducibility and comparability among studies. This article addresses the need for standardizing the characterization of magnetic instruments, with a specific focus on their ability to control the movement of paramagnetic objects within organisms. While it is well known that the force exerted on magnetic particles depends on the spatial variation (gradient) of the magnetic field, the magnitude of the field is often overlooked in the literature. Therefore, we comprehensively analyze and discuss both actors and propose a novel descriptor, termed 'effective gradient', which combines both dependencies. To illustrate the importance of both factors, we characterize different magnet systems and relate them to experiments involving superparamagnetic nanoparticles. This standardization effort aims to enhance the reproducibility and comparability of studies utilizing magnetic instruments for biological applications.


Subject(s)
Magnetics , Nanoparticles , Reproducibility of Results , Magnets , Magnetic Fields
3.
Sci Adv ; 9(15): eadf5443, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37058561

ABSTRACT

Emergent behavior in collectives of "robotic" units with limited capabilities that is robust and programmable is a promising route to perform tasks on the micro and nanoscale that are otherwise difficult to realize. However, a comprehensive theoretical understanding of the physical principles, in particular steric interactions in crowded environments, is still largely missing. Here, we study simple light-driven walkers propelled through internal vibrations. We demonstrate that their dynamics is well captured by the model of active Brownian particles, albeit with an angular speed that differs between individual units. Transferring to a numerical model, we show that this polydispersity of angular speeds gives rise to specific collective behavior: self-sorting under confinement and enhancement of translational diffusion. Our results show that, while naively perceived as imperfection, disorder of individual properties can provide another route to realize programmable active matter.

4.
J Theor Biol ; 270(1): 70-9, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21056579

ABSTRACT

Recent investigations of long-distance transport in plants using non-invasive tracer techniques such as (11)C radiolabeling monitored by positron emission tomography (PET) combined with magnetic resonance imaging (MRI) revealed the need of dedicated methods to allow a quantitative data analysis and comparison of such experiments. A mechanistic compartmental tracer transport model is presented, defined by a linear system of partial differential equations (PDEs). This model simplifies the complexity of axial transport and lateral exchanges in the transport pathways of plants (e.g. the phloem) by simulating transport and reversible exchange within three compartments using just a few parameters which are considered to be constant in space and time. For this system of PDEs an analytical solution in Fourier-space was found allowing a fast and numerically precise evaluation. From the steady-state behavior of the model, the system loss (steadily fixed tracer along the transport conduits) was derived as an additional parameter that can be readily interpreted in a physiological way. The presented framework allows the model to be fitted to spatio-temporal tracer profiles including error and sensitivity analysis of the estimated parameters. This is demonstrated for PET data sets obtained from radish, sugar beet and maize plants.


Subject(s)
Biological Transport/physiology , Models, Biological , Plants/metabolism , Radioactive Tracers , Algorithms , Beta vulgaris/metabolism , Carbon Radioisotopes/metabolism , Computer Simulation , Fourier Analysis , Magnetic Resonance Imaging , Phloem/metabolism , Plant Roots/metabolism , Plant Structures/metabolism , Positron-Emission Tomography , Raphanus/metabolism , Xylem/metabolism , Zea mays/metabolism
5.
Cells ; 10(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34685688

ABSTRACT

The idea of remote magnetic guiding is developed from the underlying physics of a concept that allows for bijective force generation over the inner volume of magnet systems. This concept can equally be implemented by electro- or permanent magnets. Here, permanent magnets are in the focus because they offer many advantages. The equations of magnetic fields and forces as well as velocities are derived in detail and physical limits are discussed. The special hydrodynamics of nanoparticle dispersions under these circumstances is reviewed and related to technical constraints. The possibility of 3D guiding and magnetic imaging techniques are discussed. Finally, the first results in guiding macroscopic objects, superparamagnetic nanoparticles, and cells with incorporated nanoparticles are presented. The constructed magnet systems allow for orientation, movement, and acceleration of magnetic objects and, in principle, can be scaled up to human size.


Subject(s)
Cells/metabolism , Magnetic Phenomena , Magnets , Nanoparticles/chemistry , Animals , Humans , Imaging, Three-Dimensional , Magnetic Fields
6.
Nanotechnol Sci Appl ; 14: 91-100, 2021.
Article in English | MEDLINE | ID: mdl-33854305

ABSTRACT

Controlled and contactless movements of magnetic nanoparticles are crucial for fundamental biotechnological and clinical research (eg, cell manipulation and sorting, hyperthermia, and magnetic drug targeting). However, the key technological question, how to generate suitable magnetic fields on various length scales (µm-m), is still unsolved. Here, we present a system of permanent magnets which allows for steering of iron oxide nanoparticles (SPIONs) on arbitrary trajectories observable by microscopy. The movement of the particles is simply controlled by an almost force-free rotation of cylindrical arrangements of permanent magnets. The same instrument can be used to move suspended cells loaded with SPIONs along with predetermined directions. Surprisingly, it also allows for controlled movements of intracellular compartments inside of individual cells. The exclusive use of permanent magnets simplifies scaled up versions for animals or even humans, which would open the door for remotely controlled in vivo guidance of nanoparticles or micro-robots.

7.
J Magn Reson ; 322: 106867, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33423759

ABSTRACT

Halbach magnets are a source of homogeneous magnetic field in an enclosed volume while keeping stray fields at a minimum. Here, we present the design, construction, and characterization for a stack of two Halbach rings with 10 cm inner diameter providing a homogeneous (<100 ppm over 1.0×1.0×0.5cm3) magnetic field of around 105 mT, which will be used for a diamond based microwave-free widefield imaging setup. The final characterization is performed with a novel fiberized diamond-based sensor on a 3D translation stage documenting the high homogeneity of the constructed Halbach array and its suitability for the proposed use.

8.
Sci Adv ; 7(43): eabl3840, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678066

ABSTRACT

We demonstrate the operation of a rotation sensor based on the nitrogen-14 (14N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/s (13 mHz/Hz), with a bias stability of 0.4 °/s (1.1 mHz).

9.
Adv Healthc Mater ; 10(19): e2100385, 2021 10.
Article in English | MEDLINE | ID: mdl-34137217

ABSTRACT

Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.


Subject(s)
Iron , Micelles , Animals , Inflammation/drug therapy , Macrophages , Mice , Polymers
10.
Plant J ; 59(4): 634-44, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19392708

ABSTRACT

Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope (11)C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.


Subject(s)
Magnetic Resonance Imaging/methods , Plant Roots/metabolism , Plant Shoots/metabolism , Positron-Emission Tomography/methods , Beta vulgaris , Carbon Radioisotopes , Plant Roots/anatomy & histology , Plant Shoots/anatomy & histology , Raphanus , Zea mays
11.
Plant Cell Environ ; 33(8): 1393-407, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20444220

ABSTRACT

Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.


Subject(s)
Phaseolus/metabolism , Plant Transpiration , Water/metabolism , Xylem/metabolism , Isotopes/analysis , Phaseolus/physiology , Plant Stems/metabolism , Plant Stems/physiology , Xylem/physiology
12.
Plant Cell Environ ; 32(4): 368-79, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19143992

ABSTRACT

Non-invasive and rapid determination of plant biomass would be beneficial for a number of research aims. Here, we present a novel device to non-invasively determine plant water content as a proxy for plant biomass. It is based on changes of dielectric properties inside a microwave cavity resonator induced by inserted plant material. The water content of inserted shoots leads to a discrete shift in the centre frequency of the resonator. Calibration measurements with pure water showed good spatial homogeneity in the detection volume of the microwave resonators and clear correlations between water content and centre frequency shift. For cut tomato and tobacco shoots, linear correlations between fresh weight and centre frequency shift were established. These correlations were used to continuously monitor diel growth patterns of intact plants and to determine biomass increase over several days. Interferences from soil and root water were excluded by shielding pots with copper. The presented proof of principle shows that microwave resonators are promising tools to quantitatively detect the water content of plants and to determine plant biomass. As the method is non-invasive, integrative and fast, it provides the opportunity for detailed, dynamic analyses of plant growth, water status and phenotype.


Subject(s)
Biomass , Microwaves , Plants/chemistry , Water/analysis , Plant Development , Plant Shoots/chemistry
13.
J Magn Reson ; 191(2): 273-81, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18226943

ABSTRACT

This paper concerns instrumental approaches to obtain large dynamic nuclear polarization (DNP) enhancements in a completely portable system. We show that at fields of 0.35 T under ambient conditions and at X-band frequencies, 1H enhancements of >100-fold can be achieved using nitroxide radical systems, which is near the theoretical maximum for 1H polarization using the Overhauser effect at this field. These large enhancements were obtained using a custom built microwave transmitter and a commercial TE102 X-band resonant cavity. The custom built microwave transmitter is compact, so when combined with a permanent magnet it is readily transportable. Our commercial X-band resonator was modified to be tunable over a range of approximately 9.5-10 GHz, giving added versatility to our fixed field portable DNP system. In addition, a field adjustable Halbach permanent magnet has also been employed as another means for matching the electron spin resonance condition. Both portable setups provide large signal enhancements and with improvements in design and engineering, greater than 100-fold 1H enhancements are feasible.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Microwaves , Equipment Design , Equipment Failure Analysis , Magnetic Resonance Spectroscopy/methods , Reproducibility of Results , Sensitivity and Specificity
14.
Magn Reson Imaging ; 25(4): 474-80, 2007 May.
Article in English | MEDLINE | ID: mdl-17466767

ABSTRACT

A lightweight Halbach magnet system for use in nuclear magnetic resonance (NMR) studies on drill cores was designed and built. It features an improved homogeneous magnetic field with a strength of 0.22 T and a maximum accessible sensitive volume. Additionally, it is furnished with a sliding table for automatic scans of cylindrical samples. This device is optimized for nondestructive online measurements of porosity and pore size distributions of water-saturated full cylindrical and split semicylindrical drill cores of different diameters. The porosity of core plugs with diameters from 20 to 80 mm can be measured routinely using exchangeable radiofrequency coils. Advanced NMR techniques that provide 2D T(1)-T(2) correlations with an average measurement time of 30 min and permeability estimates can be performed with a special insert suitable for small core plugs with diameter and length of 20 mm.


Subject(s)
Geologic Sediments/analysis , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Magnetics , Porosity
15.
Rev Sci Instrum ; 87(1): 015103, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26827349

ABSTRACT

High magnetic fields (>1 T) are measured by NMR magnetometers with unrivaled precision if the precessing spin sample provides long coherence times. The longest coherence times are found in diluted (3)He samples, which can be hyperpolarized for sufficient signal strength. In order to have minimal influence on the homogeneity and value of the measured magnetic field, the optimal container for the (3)He should be a perfect sphere. A fused silica sphere with an inner diameter of 8 mm and an outer diameter of 12 mm was made from two hemispheres by diffusion bonding leaving only a small hole for cleaning and evacuation. This hole was closed in vacuum by a CO2 laser and the inner volume was filled with a few mbars of (3)He via wall permeation. NMR-measurements on such a sample had coherence times of 5 min. While the hemispheres were produced with <1 µm deviation from sphericity, the bonding left a step of ca. 50 µm at maximum. The influence of such a mismatch, its orientation, and the immediate environment of the sample is analyzed by FEM-simulations and discussed in view of coherence times and absolute field measurements.

16.
Tree Physiol ; 35(4): 366-75, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25595754

ABSTRACT

Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone.


Subject(s)
Fruit/metabolism , Phaseolus/metabolism , Plant Stems/metabolism , Populus/metabolism , Quercus/metabolism , Water/metabolism , Xylem/physiology , Magnetic Resonance Imaging/instrumentation , Phaseolus/physiology , Plant Exudates , Plant Transpiration , Populus/physiology , Quercus/physiology , Trees/metabolism , Trees/physiology , Water/physiology
17.
J Magn Reson ; 252: 163-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25702572

ABSTRACT

The spin-lattice relaxation time T1 of hyperpolarized (HP)-(129)Xe was improved at typical storage conditions (i.e. low and homogeneous magnetic fields). Very long wall relaxation times T(1)(wall) of about 18 h were observed in uncoated, spherical GE180 glass cells of ∅=10 cm which were free of rubidium and not permanently sealed but attached to a standard glass stopcock. An "aging" process of the wall relaxation was identified by repeating measurements on the same cell. This effect could be easily removed by repeating the initial cleaning procedure. In this way, a constant wall relaxation was ensured. The Xe nuclear spin-relaxation rate 1/T1(Xe-Xe) due to van der Waals molecules was investigated too, by admixing three different buffer gases (N(2), SF(6) and CO(2)). Especially CO(2) exhibited an unexpected high efficiency (r) in shortening the lifetime of the Xe-Xe dimers and hence prolonging the total T1 relaxation even further. These measurements also yielded an improved accuracy for the van der Waals relaxation for pure Xe (with 85% (129)Xe) of T(1)(Xe-Xe)=(4.6±0.1)h. Repeating the measurements with HP (129)Xe in natural abundance in mixtures with SF6, a strong dependence of T(1)(Xe-Xe) and r on the isotopic enrichment was observed, uncovering a shorter T(1)(Xe-Xe) relaxation for the (129)Xe in natural composition as compared to the 85% isotopically enriched gas.

18.
Adv Mater ; 26(5): 775-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24259374

ABSTRACT

A facile strategy to obtain magnetically actuated arrays of micropillars able to undergo reversible, homogeneous, drastic, and tunable geometrical changes upon application of a magnetic field with variable strength is demonstrated. A magnetically tunable gecko-inspired adhesive that works under dry and wet conditions is realized using elastomeric micropatterns containing magnetic microparticles.

19.
ACS Appl Mater Interfaces ; 6(11): 8702-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24803340

ABSTRACT

Arrays of actuated magnetic micropillars that can be tilted, twisted, and rotated in the presence of a magnetic field gradient were obtained. The type and extent of the movements are dependent on the distribution (isotropic, anisotropic) of the magnetizable particles inside the pillars and the strength and the direction of the magnetic field gradient. Independent motion of groups of pillars in the same or opposite directions or homogeneous motion of the whole pattern has been realized. Changing the pattern geometry causes changes in the roll-off angle (ROA) of water droplets on the surface. We show magnetically induced changes in the ROA and direction-dependent ROAs as a consequence of the anisotropy of tilted patterns. We also demonstrate transfer of microparticles between magnetically actuated neighboring pillars.

SELECTION OF CITATIONS
SEARCH DETAIL