Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell ; 176(3): 581-596.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661753

ABSTRACT

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.


Subject(s)
Astrocytes/metabolism , Central Nervous System/metabolism , Animals , Central Nervous System/immunology , Computational Biology/methods , Encephalomyelitis, Autoimmune, Experimental/immunology , Endoribonucleases/metabolism , Environment , Environmental Exposure/adverse effects , Genome , Genomics , Humans , Inflammation/metabolism , Linuron/adverse effects , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Protein Serine-Threonine Kinases/metabolism , Receptors, sigma/drug effects , Receptors, sigma/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism , Zebrafish
2.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31813625

ABSTRACT

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phospholipases A2, Secretory/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hexokinase/metabolism , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phospholipases A2, Secretory/genetics
3.
Nature ; 557(7707): 724-728, 2018 05.
Article in English | MEDLINE | ID: mdl-29769726

ABSTRACT

Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS)1-3. Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood4,5. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Microglia-derived TGFα acts via the ErbB1 receptor in astrocytes to limit their pathogenic activities and EAE development. Conversely, microglial VEGF-B triggers FLT-1 signalling in astrocytes and worsens EAE. VEGF-B and TGFα also participate in the microglial control of human astrocytes. Furthermore, expression of TGFα and VEGF-B in CD14+ cells correlates with the multiple sclerosis lesion stage. Finally, metabolites of dietary tryptophan produced by the commensal flora control microglial activation and TGFα and VEGF-B production, modulating the transcriptional program of astrocytes and CNS inflammation through a mechanism mediated by the aryl hydrocarbon receptor. In summary, we identified positive and negative regulators that mediate the microglial control of astrocytes. Moreover, these findings define a pathway through which microbial metabolites limit pathogenic activities of microglia and astrocytes, and suppress CNS inflammation. This pathway may guide new therapies for multiple sclerosis and other neurological disorders.


Subject(s)
Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/microbiology , Microglia/metabolism , Animals , Astrocytes/pathology , Cells, Cultured , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , ErbB Receptors/metabolism , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Inflammation/prevention & control , Lipopolysaccharide Receptors/metabolism , Mice , Mice, Inbred C57BL , Microglia/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Receptors, Aryl Hydrocarbon/metabolism , Symbiosis , Transforming Growth Factor alpha/biosynthesis , Transforming Growth Factor alpha/metabolism , Tryptophan/deficiency , Tryptophan/metabolism , Vascular Endothelial Growth Factor B/biosynthesis , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
4.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254100

ABSTRACT

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Subject(s)
Microglia , Transcriptome , Humans , Child , Adolescent , Microglia/metabolism , Longevity , Phagocytosis , Sequence Analysis, RNA
5.
Ann Neurol ; 91(2): 178-191, 2022 02.
Article in English | MEDLINE | ID: mdl-34952986

ABSTRACT

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Subject(s)
Aging/physiology , Cell Differentiation/physiology , Cellular Senescence/physiology , Myelin Sheath/physiology , Oligodendroglia/physiology , Adult , Cell Death , Cell Lineage , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Neural Stem Cells , RNA-Seq , Receptor, Platelet-Derived Growth Factor alpha , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Transcriptome , Young Adult
6.
Brain ; 145(12): 4320-4333, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35202462

ABSTRACT

Early multiple sclerosis lesions feature relative preservation of oligodendrocyte cell bodies with dying back retraction of their myelinating processes. Cell loss occurs with disease progression. Putative injury mediators include metabolic stress (low glucose/nutrient), pro-inflammatory mediators (interferon γ and tumour necrosis factor α), and excitotoxins (glutamate). Our objective was to compare the impact of these disease relevant mediators on the injury responses of human mature oligodendrocytes. In the current study, we determined the effects of these mediators on process extension and survival of human brain derived mature oligodendrocytes in vitro and used bulk RNA sequencing to identify distinct effector mechanisms that underlie the responses. All mediators induced significant process retraction of the oligodendrocytes in dissociated cell culture. Only metabolic stress (low glucose/nutrient) conditions resulted in delayed (4-6 days) non-apoptotic cell death. Metabolic effects were associated with induction of the integrated stress response, which can be protective or contribute to cell injury dependent on its level and duration of activation. Addition of Sephin1, an agonist of the integrated stress response induced process retraction under control conditions and further enhanced retraction under metabolic stress conditions. The antagonist ISRIB restored process outgrowth under stress conditions, and if added to already stressed cells, reduced delayed cell death and prolonged the period in which recovery could occur. Inflammatory cytokine functional effects were associated with activation of multiple signalling pathways (including Jak/Stat-1) that regulate process outgrowth, without integrated stress response induction. Glutamate application produced limited transcriptional changes suggesting a contribution of effects directly on cell processes. Our comparative studies indicate the need to consider both the specific injury mediators and the distinct cellular mechanisms of responses to them by human oligodendrocytes to identify effective neuroprotective therapies for multiple sclerosis.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Oligodendroglia/metabolism , Brain/pathology , Cell Death , Glucose/metabolism , Cells, Cultured
7.
J Neuroinflammation ; 19(1): 10, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991629

ABSTRACT

BACKGROUND: Astrocytes are the most numerous glial cell type with important roles in maintaining homeostasis and responding to diseases in the brain. Astrocyte function is subject to modulation by microRNAs (miRs), which are short nucleotide strands that regulate protein expression in a post-transcriptional manner. Understanding the miR expression profile of astrocytes in disease settings provides insight into the cellular stresses present in the microenvironment and may uncover pathways of therapeutic interest. METHODS: Laser-capture microdissection was used to isolate human astrocytes surrounding stroke lesions and those from neurological control tissue. Astrocytic miR expression profiles were examined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Primary human fetal astrocytes were cultured under in vitro stress conditions and transfection of a miR mimic was used to better understand how altered levels of miR-210 affect astrocyte function. The astrocytic response to stress was studied using qPCR, enzyme-linked immunosorbent assays (ELISAs), measurement of released lactate, and Seahorse. RESULTS: Here, we measured miR expression levels in astrocytes around human ischemic stroke lesions and observed differential expression of miR-210 in chronic stroke astrocytes compared to astrocytes from neurological control tissue. We also identified increased expression of miR-210 in mouse white matter tissue around middle cerebral artery occlusion (MCAO) brain lesions. We aimed to understand the role of miR-210 in primary human fetal astrocytes by developing an in vitro assay of hypoxic, metabolic, and inflammatory stresses. A combination of hypoxic and inflammatory stresses was observed to upregulate miR-210 expression. Transfection with miR-210-mimic (210M) increased glycolysis, enhanced lactate export, and promoted an anti-inflammatory transcriptional and translational signature in astrocytes. Additionally, 210M transfection resulted in decreased expression of complement 3 (C3) and semaphorin 5b (Sema5b). CONCLUSIONS: We conclude that miR-210 expression in human astrocytes is modulated in response to ischemic stroke disease and under in vitro stress conditions, supporting a role for miR-210 in the astrocytic response to disease conditions. Further, the anti-inflammatory and pro-glycolytic impact of miR-210 on astrocytes makes it a potential candidate for further research as a neuroprotective agent.


Subject(s)
Astrocytes/metabolism , Inflammation/metabolism , MicroRNAs/metabolism , Stroke/metabolism , Animals , HeLa Cells , Humans , Inflammation/genetics , Laser Capture Microdissection , Mice , MicroRNAs/genetics , Stroke/genetics
8.
J Immunol ; 205(2): 398-406, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32540991

ABSTRACT

Vitamin D deficiency is a major environmental risk factor for the development of multiple sclerosis. The major circulating metabolite of vitamin D (25-hydroxyvitamin D) is converted to the active form (calcitriol) by the hydroxylase enzyme CYP27B1 In multiple sclerosis lesions, the tyrosine kinase MerTK expressed by myeloid cells regulates phagocytosis of myelin debris and apoptotic cells that can accumulate and inhibit tissue repair and remyelination. In this study, we explored the effect of calcitriol on homeostatic (M-CSF, TGF-ß-treated) and proinflammatory (GM-CSF-treated) human monocyte-derived macrophages and microglia using RNA sequencing. Transcriptomic analysis revealed significant calcitriol-mediated effects on both Ag presentation and phagocytosis pathways. Calcitriol downregulated MerTK mRNA and protein expression in both myeloid populations, resulting in reduced capacity of these cells to phagocytose myelin and apoptotic T cells. Proinflammatory myeloid cells expressed high levels of CYP27B1 compared with homeostatic myeloid cells. Only proinflammatory cells in the presence of TNF-α generated calcitriol from 25-hydroxyvitamin D, resulting in repression of MerTK expression and function. This selective production of calcitriol in proinflammatory myeloid cells has the potential to reduce the risk for autoantigen presentation while retaining the phagocytic ability of homeostatic myeloid cells.


Subject(s)
Brain/pathology , Inflammation/metabolism , Macrophages/immunology , Microglia/immunology , Multiple Sclerosis/metabolism , Vitamin D/metabolism , c-Mer Tyrosine Kinase/metabolism , Antigen Presentation , Autoantigens/immunology , Autoantigens/metabolism , Cells, Cultured , Gene Expression Profiling , Homeostasis , Humans , Inflammation/immunology , Multiple Sclerosis/immunology , Phagocytosis , Sequence Analysis, RNA , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , c-Mer Tyrosine Kinase/genetics
9.
Proc Natl Acad Sci U S A ; 114(8): 2012-2017, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167760

ABSTRACT

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the CNS that causes disability in young adults as a result of the irreversible accumulation of neurological deficits. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, these therapies show limited efficacy in secondary progressive MS (SPMS). Thus, there is an unmet clinical need for the identification of disease mechanisms and potential therapeutic approaches for SPMS. Here, we show that the sphingosine 1-phosphate receptor (S1PR) modulator fingolimod (FTY720) ameliorated chronic progressive experimental autoimmune encephalomyelitis in nonobese diabetic mice, an experimental model that resembles several aspects of SPMS, including neurodegeneration and disease progression driven by the innate immune response in the CNS. Indeed, S1PR modulation by FTY720 in murine and human astrocytes suppressed neurodegeneration-promoting mechanisms mediated by astrocytes, microglia, and CNS-infiltrating proinflammatory monocytes. Genome-wide studies showed that FTY720 suppresses transcriptional programs associated with the promotion of disease progression by astrocytes. The study of the molecular mechanisms controlling these transcriptional modules may open new avenues for the development of therapeutic strategies for progressive MS.


Subject(s)
Astrocytes/drug effects , Immunosuppressive Agents/pharmacology , Multiple Sclerosis, Chronic Progressive/drug therapy , Receptors, Lysosphingolipid/metabolism , Animals , Astrocytes/metabolism , Cell Line, Tumor , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Microglia/metabolism , Monocytes/immunology , Monocytes/metabolism , Multiple Sclerosis, Chronic Progressive/pathology , Primary Cell Culture , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors , Transcriptome/drug effects
10.
Glia ; 67(4): 582-593, 2019 04.
Article in English | MEDLINE | ID: mdl-30444064

ABSTRACT

During inflammatory processes of the central nervous system, helper T cells have the capacity to cross the blood-brain barrier and injure or kill neural cells through cytotoxic mechanisms. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is part of the astrocyte cytoskeleton that can become fragmented in neuroinflammatory conditions. The mechanism of action by which helper T cells with cytotoxic properties injure astrocytes is not completely understood. Primary human astrocytes were obtained from fetal brain tissue. Human helper (CD4+ ) T cells were isolated from peripheral blood mononuclear cells and activated with the superantigen staphylococcal enterotoxin E (SEE). Granzyme B was detected by enzyme linked immunosorbent assay and intracellular flow cytometry. GFAP fragmentation was monitored by western blotting. Cell death was monitored by lactic acid dehydrogenase release and terminal biotin-dUTP nick labeling (TUNEL). Astrocyte migration was monitored by scratch assay. Adult human oligodendrocytes were cultured with sublethally injured astrocytes to determine support function. Helper T cells activated with SEE expressed granzyme B but not perforin. Helper T cells released granzyme B upon contact with astrocytes and caused GFAP fragmentation in a caspase-dependent, MHCII-independent manner. Sublethally injured astrocytes were not apoptotic; however, their processes were thin and elongated, their migration was attenuated, and their ability to support oligodendrocytes was reduced in vitro. Helper T cells can release granzyme B causing sublethal injury to astrocytes, which compromises the supportive functions of astrocytes. Blocking these pathways may lead to improved resolution of neuroinflammatory lesions.


Subject(s)
Astrocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , Glial Fibrillary Acidic Protein/metabolism , Granzymes/metabolism , Histocompatibility Antigens Class II/physiology , Adult , Antibodies/pharmacology , Astrocytes/drug effects , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , Enterotoxins/pharmacology , Enzyme Inhibitors/pharmacology , Fetus , Flow Cytometry , Humans , In Situ Nick-End Labeling , Leukocytes, Mononuclear , Oligodendroglia , Oligopeptides/pharmacology , Wounds and Injuries/pathology
11.
J Immunol ; 187(1): 570-9, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21622858

ABSTRACT

FTY720 (fingolimod) treatment of multiple sclerosis (MS) results in lymphopenia due to increased recruitment into and decreased egress from secondary lymphoid organs of CCR7(+) lymphocytes. Although absolute numbers of NK lymphocytes were reported as being unaltered in FTY720-treated MS patients (MS-FTY), such analyses did not detect a change in a minor subset. Because expression of CCR7 has been described on CD56(bright) NK cells, a minority population of NK cells, we investigated the effect of FTY720 treatment on the phenotype and function of human NK cells in the peripheral circulation of MS patients. MS-FTY patients displayed a decreased proportion of peripheral CD56(bright)CD62L(+)CCR7(+) NK cells compared with untreated MS and healthy donors. In vitro treatment with FTY720-P increased migration of untreated donor NK cells to CXCL12 while reducing the response to CX3CL1 with similar migration responses seen in NK cells from MS-FTY patients. FTY720-P inhibited sphingosine 1-phosphate-directed migration of CD56(bright) and CD56(dim) NK cells subsets from untreated healthy donors. IL-12- and IL-15-stimulated NK cells from MS-FTY patients displayed similar capacity to produce IFN-γ, TNF, IL-10, and MIP-1α cytokines/chemokines compared with NK cells from untreated healthy donors and displayed comparable levels of degranulation in response to K562 tumor cells compared with untreated donors. Subset alterations and function of NK cell populations will need to be considered as part of assessing overall immunosurveillance capacity of patients with MS who will receive sustained FTY720 therapy.


Subject(s)
CD56 Antigen/metabolism , Immunosuppressive Agents/therapeutic use , Killer Cells, Natural/immunology , Lymphopenia/immunology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Propylene Glycols/therapeutic use , Sphingosine/analogs & derivatives , CD56 Antigen/biosynthesis , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/immunology , Down-Regulation/immunology , Fingolimod Hydrochloride , Humans , Immunophenotyping , Killer Cells, Natural/pathology , Lymphocyte Count , Lymphopenia/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Sphingosine/therapeutic use
12.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37408029

ABSTRACT

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Reactive Oxygen Species/metabolism , Oligodendroglia/pathology , Cell Death , Multiple Sclerosis, Chronic Progressive/pathology , Adenosine Triphosphate/metabolism
13.
Science ; 379(6636): 1023-1030, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893254

ABSTRACT

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Subject(s)
Amphiregulin , Astrocytes , Autocrine Communication , Genetic Testing , Microfluidic Analytical Techniques , Microglia , Astrocytes/physiology , Genetic Testing/methods , High-Throughput Screening Assays , Microfluidic Analytical Techniques/methods , Microglia/physiology , Amphiregulin/genetics , Autocrine Communication/genetics , Gene Expression , Humans
14.
Nanoscale ; 13(5): 3173-3183, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33527928

ABSTRACT

Ultra-small gold nanoclusters (AuNCs) with designed sizes and ligands are gaining popularity for biomedical purposes and ultimately for human imaging and therapeutic applications. Human non-tumor brain cells, astrocytes, are of particular interest because they are abundant and play a role in functional regulation of neurons under physiological and pathological conditions. Human primary astrocytes were treated with AuNCs of varying sizes (Au10, Au15, Au18, Au25) and ligand composition (glutathione, polyethylene glycol, N-acetyl cysteine). Concentration and time-dependent studies showed no significant cell loss with AuNC concentrations <10 µM. AuNC treatment caused marked differential astrocytic responses at the organellar and transcription factor level. The effects were exacerbated under severe oxidative stress induced by menadione. Size-dependent effects were most remarkable with the smallest and largest AuNCs (10, 15 Au atoms versus 25 Au atoms) and might be related to the accessibility of biological targets toward the AuNC core, as demonstrated by QM/MM simulations. In summary, these findings suggest that AuNCs are not inert in primary human astrocytes, and that their sizes play a critical role in modulation of organellar and redox-responsive transcription factor homeostasis.


Subject(s)
Gold , Metal Nanoparticles , Astrocytes , Humans , Ligands , Transcription Factors
15.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888612

ABSTRACT

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Subject(s)
Astrocytes/physiology , Cell Communication , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Microglia/physiology , Multiple Sclerosis/physiopathology , Single-Cell Analysis , Animals , Antigens, CD/metabolism , Brain/pathology , Brain/physiopathology , Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ephrin-B3/metabolism , Herpesvirus 1, Suid/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , RNA-Seq , Reactive Oxygen Species/metabolism , Receptor, EphB3/antagonists & inhibitors , Receptor, EphB3/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Signal Transduction , T-Lymphocytes/physiology , TOR Serine-Threonine Kinases/metabolism
16.
J Neuropathol Exp Neurol ; 78(12): 1130-1146, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31665376

ABSTRACT

Astrocytes are increasingly recognized as active contributors to the disease process in multiple sclerosis (MS), rather than being merely reactive. We investigated the expression of a selected microRNA (miRNA) panel that could contribute both to the injury and to the recovery phases of the disease. Individual astrocytes were laser microdissected from brain sections. We then compared the miRNAs' expressions in MS and control brain samples at different lesional stages in white versus grey matter regions. In active MS lesions, we found upregulation of ischemia-related miRNAs in white but not grey matter, often with reversion to the normal state in inactive lesions. In contrast to our previous findings on MS macrophages, expression of 2 classical inflammatory-related miRNAs, miRNA-155 and miRNA-146a, was reduced in astrocytes from active and chronic active MS lesions in white and grey matter, suggesting a lesser direct pathogenetic role for these miRNAs in astrocytes. miRNAs within the categories regulating aquaporin4 (-100, -145, -320) and glutamate transport/apoptosis/neuroprotection (-124a, -181a, and -29a) showed some contrasting responses. The regional and lesion-stage differences of expression of these miRNAs indicate the remarkable ability of astrocytes to show a wide range of selective responses in the face of differing insults and phases of resolution.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Brain/pathology , MicroRNAs/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Encephalitis/complications , Encephalitis/metabolism , Female , Gray Matter/pathology , Humans , Male , Multiple Sclerosis/etiology , White Matter/pathology
17.
J Neurosci ; 27(5): 1220-8, 2007 Jan 31.
Article in English | MEDLINE | ID: mdl-17267578

ABSTRACT

NKG2D is an activating or coactivating receptor expressed on human natural killer (NK) cells, CD8+ T cells, and gamma/delta T cells. NKG2D ligands have been detected on many tumor cell types and can be induced on nontransformed cells by environmental signals including DNA damage and inflammation. We investigated the contribution of NKG2D-NKG2D ligand interaction on CNS-directed immune responses. We observed that primary cultures of human adult oligodendrocytes and fetal astrocytes expressed ligands for NKG2D in vitro whereas neurons, microglia, and adult astrocytes did not. Disruption of the NKG2D-NKG2D ligand interaction using blocking antibodies significantly inhibited killing of primary human oligodendrocytes mediated by activated human NK cells, gamma/delta T cells, and allo-reactive CD8+ T cells. NKG2D ligands [major histocompatibility complex class I chain-related molecules A and B (MICA/B)] were detected in groups of cells and colocalized with an oligodendrocyte marker (adenomatous polyposis coli) in white matter sections obtained from multiple sclerosis lesions but not in normal control samples. CD8+ T cells could be detected in close proximity to MICA/B+ cells within multiple sclerosis lesions, supporting an in vivo interaction between these immune effectors and stressed MICA/B-expressing oligodendrocytes. These results imply that NKG2D-NKG2D ligand interaction can potentially contribute to cytotoxic responses mediated by activated immune effector cells in the inflamed CNS, as observed in multiple sclerosis.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oligodendroglia/metabolism , Receptors, Immunologic/physiology , Adult , Aged , Cells, Cultured , Cytotoxicity, Immunologic/genetics , Embryo, Mammalian , Female , Histocompatibility Antigens Class I/biosynthesis , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/physiology , Humans , Killer Cells, Natural/immunology , Ligands , Lymphocyte Activation/genetics , Male , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , NK Cell Lectin-Like Receptor Subfamily K , Oligodendroglia/immunology , Oligodendroglia/pathology , Protein Binding/genetics , Receptors, Immunologic/genetics , Receptors, Natural Killer Cell
18.
J Neuropathol Exp Neurol ; 67(6): 590-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18520777

ABSTRACT

Neuronal injury and loss are recognized features of neuroinflammatory disorders, including acute and chronic encephalitides and multiple sclerosis; destruction of astrocytes has been demonstrated in cases of Rasmussen encephalitis. Here, we show that innate immune cells (i.e. natural killer [NK] and gammadelta T cells) cause loss of neurons from primary human neuron-enriched cultures by destroying the supporting astrocytes. Interleukin 2-activated NK cells caused loss of astrocytes within 1 hour, whereas neurons were lost at 4 hours. Time-lapse imaging indicated that delayed neuron loss was due to early destruction of supporting astrocytes. Selective blocking of astrocyte death with anti-NKG2D antibodies reduced neuron loss, as did blocking of CD54 on astrocytes. gammadelta T cells also induced astrocyte cytotoxicity, leading to subsequent neuronal displacement. In astrocytes, NK cells caused caspase-dependent fragmentation of the intermediate filament proteins glial fibrillary acidic protein and vimentin, whereas anti-CD3-activated T cells produced fragmentation to a lesser extent and without measurable cytotoxicity. Glial fibrillary acidic protein fragmentation was also demonstrated in lysates from chronic multiple sclerosis plaques but not from normal control white matter. These data suggest that non-major histocompatibility complex-restricted immune effector cells may contribute to neuron loss in neuroinflammatory disorders indirectly through injury of glia.


Subject(s)
Astrocytes/pathology , Cytotoxicity, Immunologic , Immunity, Innate , Killer Cells, Natural/immunology , Neurons/pathology , T-Lymphocytes/immunology , Blotting, Western , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Histocompatibility Antigens Class I , Humans , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Vimentin
19.
J Neuropathol Exp Neurol ; 66(9): 848-59, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17805015

ABSTRACT

Toll-like receptors (TLRs) are expressed by human microglia and translate environmental cues into distinct activation programs. We addressed the impact of TLR ligation on the capacity of human microglia to activate and polarize CD4 T cell responses. As microglia exist under distinct states of activation, we examined both ramified and ameboid microglia isolated from adult and fetal CNS, respectively. In vitro, ligation of TLR3 significantly increased major histocompatibility complex and costimulatory molecule expression on adult microglia and induced high levels of interferon-alpha, interleukin-12p40, and interleukin-23. TLR4 and, in particular, TLR2 had a more limited capacity to induce such responses. Coculturing allogeneic CD4 T cells with microglia preactivated with TLR3 did not increase T cell proliferation above basal levels but consistently led to elevated levels of interferon-gamma secretion and Th1 polarization. Fetal microglial TLR3 responses were comparable; in contrast, TLR2 and TLR4 decreased major histocompatibility complex class II expression on fetal cells and reduced CD4 T cell proliferation to levels below those found in untreated cocultures. All 3 TLRs induced comparable interleukin-6 secretion by microglia. Our findings illustrate how activation of human microglia via TLRs, particularly TLR3, can change the profile of local CNS immune responses by translating Th1 polarizing signals to CD4 T cells.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Cell Polarity , Microglia/physiology , Th1 Cells/physiology , Toll-Like Receptor 3/physiology , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Brain/cytology , Brain/embryology , CD40 Antigens/metabolism , Cell Polarity/physiology , Coculture Techniques , Cytokines/metabolism , Histocompatibility Antigens/metabolism , Humans , Major Histocompatibility Complex , Signal Transduction/physiology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
20.
J Neuroimmunol ; 310: 143-149, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28606377

ABSTRACT

Microglia provide immune surveillance within the brain and spinal cord. Various microglial morphologies include ramified, amoeboid, and pseudopodic. The link between form and function is not clear, especially for human adult microglia which are limited in availability for study. Here, we examined primary human microglia isolated from normal-appearing white matter. Pseudopodic and amoeboid microglia were effective phagocytes, taking up E. coli bioparticles using ruffled cell membrane sheets and retrograde transport. Pseudopodic and amoeboid microglia were more effective phagocytes as compared to ramified microglia or monocyte-derived dendritic cells. Thus, amoeboid and pseudopodic microglia may both be effective as brain scavengers.


Subject(s)
Amoeba/cytology , Microglia/physiology , Phagocytes/cytology , Phagocytes/physiology , Time-Lapse Imaging , Actins/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Bacterial Infections , Calcium-Binding Proteins , Cells, Cultured , DNA-Binding Proteins/metabolism , Epilepsy/pathology , Escherichia coli/pathogenicity , Humans , Microfilament Proteins , Microglia/microbiology , Microglia/pathology , Temporal Lobe/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL