Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
2.
J Agric Food Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832924

ABSTRACT

Lignins are a key adaptation that enables vascular plants to thrive in terrestrial habitats. Lignin is heterogeneous, containing upward of 30 different monomers, and its function is multifarious: It provides structural support, predetermined breaking points, ultraviolet protection, diffusion barriers, pathogen resistance, and drought resilience. Recent studies, carefully characterizing lignin in situ, have started to identify specific lignin compositions and ultrastructures with distinct cellular functions, but our understanding remains fractional. We summarize recent works and highlight where further in situ lignin analysis could provide valuable insights into plant growth and adaptation. We also summarize strengths and weaknesses of lignin in situ analysis methods.

3.
Methods Mol Biol ; 2722: 201-226, 2024.
Article in English | MEDLINE | ID: mdl-37897609

ABSTRACT

Lignin is a group of cell wall localised heterophenolic polymers varying in the chemistry of the aromatic and aliphatic parts of its units. The lignin residues common to all vascular plants have an aromatic ring with one para hydroxy group and one meta methoxy group, also called guaiacyl (G). The terminal function of the aliphatic part of these G units, however, varies from alcohols, which are generally abundant, to aldehydes, which represent a smaller proportion of lignin monomers. The proportions of aldehyde to alcohol G units in lignin are, nevertheless, precisely controlled to respond to environmental and development cues. These G aldehyde to alcohol unit proportions differ between each cell wall layer of each cell type to fine-tune the cell wall biomechanical and physico-chemical properties. To precisely determine changes in lignin composition, we, herein, describe the various methods to detect and quantify the levels and positions of G aldehyde units, also called coniferaldehyde residues, of lignin polymers in ground plant samples as well as in situ in histological cross-sections.


Subject(s)
Acrolein , Lignin , Lignin/metabolism , Acrolein/metabolism , Aldehydes/metabolism , Polymers/chemistry , Cell Wall/chemistry
4.
SELECTION OF CITATIONS
SEARCH DETAIL