Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868189

ABSTRACT

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Subject(s)
Genome-Wide Association Study , Regulatory Sequences, Nucleic Acid , Animals , Mice , Introns , Cell Differentiation , Gene Silencing , Mi-2 Nucleosome Remodeling and Deacetylase Complex
2.
Cell ; 158(4): 849-860, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126789

ABSTRACT

Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts ß-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the ß-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total ß-globin synthesis, with a reciprocal reduction in adult ß-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.


Subject(s)
Chromatin/metabolism , Fetal Hemoglobin/genetics , Genetic Techniques , Locus Control Region , Transcriptional Activation , beta-Globins/genetics , Animals , Antigens, CD34/metabolism , Chromatin/chemistry , Embryo, Mammalian/metabolism , Erythroblasts/metabolism , Hemoglobinopathies/genetics , Hemoglobinopathies/therapy , Humans , Mice , Primary Cell Culture
3.
Mol Cell ; 81(11): 2332-2348.e9, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33974912

ABSTRACT

Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.


Subject(s)
Carcinogenesis/genetics , DNA Helicases/genetics , Intrinsically Disordered Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Base Sequence , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Chromatin/pathology , DNA Helicases/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Humans , Intrinsically Disordered Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Protein Interaction Mapping , Protein Stability , Protein Transport , Signal Transduction , Survival Analysis , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
4.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34358447

ABSTRACT

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Subject(s)
Interferon Regulatory Factors/metabolism , Leukemia, Myeloid, Acute/metabolism , Tumor Suppressor Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Interferon Regulatory Factors/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Mas , Transcription Factors/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Proteins/genetics
5.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33301730

ABSTRACT

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Subject(s)
DNA/genetics , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Transcription Factors/genetics , Animals , Binding Sites , COS Cells , CRISPR-Cas Systems , Chlorocebus aethiops , DNA/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/transplantation , Fetal Blood/cytology , Fetal Blood/metabolism , Fetal Hemoglobin/metabolism , Fetus , Gene Editing , HEK293 Cells , Heterografts , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Mouse Embryonic Stem Cells/cytology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Activation
6.
Cell ; 154(4): 718-20, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953105

ABSTRACT

Based on a massive transcription factor location analysis within a single cell type, in this issue Yan et al. find that the great majority of occupancies occur within dense clusters of up to 100 factors that almost invariably contain cohesins. Retention of cohesins at cluster sites during mitosis raises the possibility that they contribute to transcriptional memory during the cell cycle.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/metabolism , Animals , Humans , Cohesins
7.
Nature ; 610(7933): 783-790, 2022 10.
Article in English | MEDLINE | ID: mdl-36224385

ABSTRACT

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Subject(s)
gamma-Globins , Humans , Chromatin , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , gamma-Globins/biosynthesis , gamma-Globins/genetics , Hypoxia/genetics , Prolyl Hydroxylases/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA, Long Noncoding , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Erythropoiesis
8.
Genome Res ; 34(7): 1089-1105, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38951027

ABSTRACT

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.


Subject(s)
Epigenesis, Genetic , Epigenome , Species Specificity , Animals , Mice , Humans , Blood Cells/metabolism , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Epigenomics/methods
9.
Cell ; 149(6): 1233-44, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22682246

ABSTRACT

Chromatin loops juxtapose distal enhancers with active promoters, but their molecular architecture and relationship with transcription remain unclear. In erythroid cells, the locus control region (LCR) and ß-globin promoter form a chromatin loop that requires transcription factor GATA1 and the associated molecule Ldb1. We employed artificial zinc fingers (ZF) to tether Ldb1 to the ß-globin promoter in GATA1 null erythroblasts, in which the ß-globin locus is relaxed and inactive. Remarkably, targeting Ldb1 or only its self-association domain to the ß-globin promoter substantially activated ß-globin transcription in the absence of GATA1. Promoter-tethered Ldb1 interacted with endogenous Ldb1 complexes at the LCR to form a chromatin loop, causing recruitment and phosphorylation of RNA polymerase II. ZF-Ldb1 proteins were inactive at alleles lacking the LCR, demonstrating that their activities depend on long-range interactions. Our findings establish Ldb1 as a critical effector of GATA1-mediated loop formation and indicate that chromatin looping causally underlies gene regulation.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , LIM Domain Proteins/metabolism , Transcription, Genetic , beta-Globins/genetics , Animals , Cell Line , Cell Separation , DNA-Binding Proteins/chemistry , Embryo, Mammalian/cytology , Erythroblasts/metabolism , Female , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , LIM Domain Proteins/chemistry , Male , Mice , Promoter Regions, Genetic , Protein Structure, Tertiary , Zinc Fingers
10.
Cell ; 150(4): 725-37, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22901805

ABSTRACT

Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division.


Subject(s)
Erythroid Cells/metabolism , GATA1 Transcription Factor/metabolism , Hematopoiesis , Mitosis , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Embryonic Stem Cells/metabolism , Histone Code , Mice , Nuclear Proteins/metabolism , Organ Specificity , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transcription Factors/metabolism
11.
Mol Cell ; 73(3): 519-532.e4, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554946

ABSTRACT

Transcriptional regulation occurs via changes to rates of different biochemical steps of transcription, but it remains unclear which rates are subject to change upon biological perturbation. Biochemical studies have suggested that stimuli predominantly affect the rates of RNA polymerase II (Pol II) recruitment and polymerase release from promoter-proximal pausing. Single-cell studies revealed that transcription occurs in discontinuous bursts, suggesting that features of such bursts like frequency and intensity could also be regulated. We combined Pol II chromatin immunoprecipitation sequencing (ChIP-seq) and single-cell transcriptional measurements to show that an independently regulated burst initiation step is required before polymerase recruitment can occur. Using a number of global and targeted transcriptional regulatory perturbations, we showed that biological perturbations regulated both burst initiation and polymerase pause release rates but seemed not to regulate polymerase recruitment rate. Our results suggest that transcriptional regulation primarily acts by changing the rates of burst initiation and polymerase pause release.


Subject(s)
Mouse Embryonic Stem Cells/enzymology , RNA Polymerase II/metabolism , RNA/biosynthesis , Transcription Initiation Site , Transcription Initiation, Genetic , Transcriptional Activation , Animals , Binding Sites , Cell Line , Computer Simulation , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Models, Genetic , Protein Binding , RNA/genetics , RNA Polymerase II/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Time Factors
12.
Blood ; 144(8): 845-852, 2024 08 22.
Article in English | MEDLINE | ID: mdl-38728575

ABSTRACT

ABSTRACT: It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and ß-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult ß-globin genes, such as sickle cell disease and ß-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.


Subject(s)
Fetal Hemoglobin , Humans , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Animals , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Anemia, Sickle Cell/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/therapy , beta-Thalassemia/metabolism , Erythropoiesis/genetics , beta-Globins/genetics , beta-Globins/metabolism
13.
Blood ; 143(19): 1980-1991, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38364109

ABSTRACT

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Subject(s)
Fetal Hemoglobin , Kruppel-Like Transcription Factors , MicroRNAs , Repressor Proteins , Humans , beta-Globins/genetics , beta-Globins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Erythroblasts/metabolism , Erythroblasts/cytology , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , gamma-Globins/genetics , gamma-Globins/metabolism , Gene Expression Regulation , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Transcription, Genetic
14.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639593

ABSTRACT

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Subject(s)
Rhabdomyosarcoma , CCAAT-Binding Factor/genetics , Cell Differentiation/genetics , Chromosome Aberrations , Rhabdomyosarcoma/genetics , Transcription Factors
15.
Blood ; 141(22): 2756-2770, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36893455

ABSTRACT

The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and ß-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.


Subject(s)
Fetal Hemoglobin , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Fetal Hemoglobin/genetics , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
16.
Nature ; 576(7785): 158-162, 2019 12.
Article in English | MEDLINE | ID: mdl-31776509

ABSTRACT

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Subject(s)
Chromatin , G1 Phase , Mitosis , Animals , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mice , Cohesins
17.
Mol Cell ; 66(1): 102-116.e7, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28388437

ABSTRACT

Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Repressor Proteins/metabolism , Transcription, Genetic , Animals , Binding Sites , CCCTC-Binding Factor , CRISPR-Cas Systems , Cell Line , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Gene Editing/methods , In Situ Hybridization, Fluorescence , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Single Molecule Imaging/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Transfection
18.
Nucleic Acids Res ; 51(4): 1674-1686, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36660822

ABSTRACT

ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.


Subject(s)
Transcription Factors , Animals , Amino Acid Sequence , Artificial Intelligence , Mammals/genetics , Protein Binding , Protein Domains , Zinc Fingers/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism
19.
Genes Dev ; 31(16): 1704-1713, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28916711

ABSTRACT

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled ß-globin locus. Specifically, new fetal stage-specific contacts were uncovered between a region separating the fetal (γ) and adult (δ and ß) globin genes (encompassing the HBBP1 and BGLT3 noncoding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells, the HBBP1-BGLT3 region contacts the embryonic ε-globin gene, physically separating the fetal globin genes from the enhancer (locus control region [LCR]). Deletion of the HBBP1 region in adult cells alters contact landscapes in ways more closely resembling those of fetal cells, including increased LCR-γ-globin contacts. These changes are accompanied by strong increases in γ-globin transcription. Notably, the effects of HBBP1 removal on chromatin architecture and gene expression closely mimic those of deleting the fetal globin repressor BCL11A, implicating BCL11A in the function of the HBBP1 region. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements.


Subject(s)
Chromatin/chemistry , Erythroblasts/metabolism , Gene Expression Regulation, Developmental , Regulatory Elements, Transcriptional , beta-Globins/genetics , Adult , Carrier Proteins/genetics , Fetus , Gene Silencing , Humans , Locus Control Region , Nuclear Proteins/genetics , Pseudogenes , Repressor Proteins , Transcriptome , gamma-Globins/genetics
20.
Blood ; 139(14): 2107-2118, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35090172

ABSTRACT

The benign condition hereditary persistence of fetal hemoglobin (HPFH) is known to ameliorate symptoms of co-inherited ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. The condition is sometimes associated with point mutations in the fetal globin promoters that disrupt the binding of the repressors BCL11A or ZBTB7A/LRF, which have been extensively studied. HPFH is also associated with a range of deletions within the ß-globin locus that all reside downstream of the fetal HBG2 gene. These deletional forms of HPFH are poorly understood and are the focus of this study. Numerous different mechanisms have been proposed to explain how downstream deletions can boost the expression of the fetal globin genes, including the deletion of silencer elements, of genes encoding noncoding RNA, and bringing downstream enhancer elements into proximity with the fetal globin gene promoters. Here we systematically analyze the deletions associated with both HPFH and a related condition known as δß-thalassemia and propose a unifying mechanism. In all cases where fetal globin is upregulated, the proximal adult ß-globin (HBB) promoter is deleted. We use clustered regularly interspaced short palindromic repeats-mediated gene editing to delete or disrupt elements within the promoter and find that virtually all mutations that reduce ΗΒΒ promoter activity result in elevated fetal globin expression. These results fit with previous models where the fetal and adult globin genes compete for the distal locus control region and suggest that targeting the ΗΒΒ promoter might be explored to elevate fetal globin and reduce sickle globin expression as a treatment of ß-hemoglobinopathies.


Subject(s)
Globins , beta-Thalassemia , Carrier Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Gene Expression , Globins/metabolism , Humans , Transcription Factors/genetics , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/therapy
SELECTION OF CITATIONS
SEARCH DETAIL