Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Proc Natl Acad Sci U S A ; 121(8): e2312621121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346191

ABSTRACT

One of the hallmarks of type 1 but also type 2 diabetes is pancreatic islet inflammation, associated with altered pancreatic islet function and structure, if unresolved. IL-1ß is a proinflammatory cytokine which detrimentally affects ß-cell function. In the course of diabetes, complement components, including the central complement protein C3, are deregulated. Previously, we reported high C3 expression in human pancreatic islets, with upregulation after IL-1ß treatment. In the current investigation, using primary human and rodent material and CRISPR/Cas9 gene-edited ß-cells deficient in C3, or producing only cytosolic C3 from a noncanonical in-frame start codon, we report a protective effect of C3 against IL-1ß-induced ß-cell death, that is attributed to the cytosolic fraction of C3. Further investigation revealed that intracellular C3 alleviates IL-1ß-induced ß-cell death, by interaction with and inhibition of Fyn-related kinase (FRK), which is involved in the response of ß-cells to cytokines. Furthermore, these data were supported by increased ß-cell death in vivo in a ß-cell-specific C3 knockout mouse. Our data indicate that a functional, cytoprotective association exists between FRK and cytosolic C3.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Cell Death , Cytokines/metabolism , Mice, Knockout
3.
Immunol Rev ; 313(1): 104-119, 2023 01.
Article in English | MEDLINE | ID: mdl-36100972

ABSTRACT

The term "intracellular complement" has been introduced recently as an umbrella term to distinguish functions of complement proteins that take place intracellularly, rather than in the extracellular environment. However, this rather undefined term leaves some confusion as to the classification of what intracellular complement really is, and as to which intracellular compartment(s) it should refer to. In this review, we will describe the evidence for both canonical and non-canonical functions of intracellular complement proteins, as well as the current controversies and unanswered questions as to the nature of the intracellular complement. We also suggest new terms to facilitate the accurate description and discussion of specific forms of intracellular complement and call for future experiments that will be required to provide more definitive evidence and a better understanding of the mechanisms of intracellular complement activity.


Subject(s)
Complement System Proteins , Humans , Complement System Proteins/metabolism
5.
Eur J Immunol ; : e2350813, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757569

ABSTRACT

The complement system is a proteolytic cascade triggered by pathogen and danger-associated molecular patterns, with resultant outcomes of inflammation, cellular activation, and opsonization of material for removal by phagocytosis. While first discovered as an activity in serum, it is now recognized that complement components play important roles at local and individual cell-intrinsic levels. In particular, apart from the extracellular serum activities of complement, it is now believed that complement also acts intracellularly, as part of a cellular signal transduction cascade that can stimulate cellular survival and activation, and individual immune cell phenotypes, via effects on cellular metabolism. This review will describe what is currently known about how complement functions in intracellular signal transduction, and outline the functional advantages of a compartmentalized and intracellular complement system.

6.
PLoS Pathog ; 19(3): e1011055, 2023 03.
Article in English | MEDLINE | ID: mdl-36862761

ABSTRACT

Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Humans , Neisseria gonorrhoeae/metabolism , Neutrophils/microbiology , Complement C4b-Binding Protein/metabolism , Bacterial Outer Membrane Proteins/metabolism , Gonorrhea/microbiology
7.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666870

ABSTRACT

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Subject(s)
Alternative Splicing , Diabetes Mellitus , CD59 Antigens/genetics , CD59 Antigens/metabolism , Diabetes Mellitus/genetics , Humans , Insulin Secretion , Protein Isoforms/genetics , Protein Isoforms/metabolism
8.
Cancer Immunol Immunother ; 73(5): 93, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563861

ABSTRACT

BACKGROUND: Cartilage oligomeric matrix protein (COMP) is a novel regulator of the tumor microenvironment. Studies in colon cancer and pancreatobiliary adenocarcinoma have revealed COMP expression to be associated with decreased infiltration of immune cells in the tumor microenvironment. Herein, the expression of COMP was investigated in gastric and esophageal adenocarcinoma with particular reference to its the relationship with the immune microenvironment. METHODS: COMP expression was evaluated in tissue microarrays representing primary tumors from 159 patients with chemo- and radiotherapy naïve esophageal and gastric adenocarcinoma and 67 matched samples of lymph node metastases using immunohistochemistry. Additionally, collagen fibers were stained with Sirius Red and evaluated with the FIJI macro TWOMBLI algorithm. RESULTS: The expression of COMP in cancer cells in the entire cohort was associated with shorter overall survival (OS) (p = 0.013) and recurrence-free survival (RFS) (p = 0.029), while COMP expression in the stroma was correlated with shorter RFS (p = 0.042). Similar correlations were found for patients with gastric adenocarcinoma, whereas COMP expression was not prognostic in esophageal adenocarcinoma. Further, in the entire cohort, the expression of COMP in the stroma was correlated with exclusion of different populations of immune cells (CD8+, CD3+, FoxP3+, CD20+) from the tumor microenvironment. Finally, higher density and alignment of collagen fibers were correlated with the expression of COMP in the stroma. CONCLUSIONS: Expression of COMP in gastric and esophageal adenocarcinoma was correlated with shorter OS and RFS. A reduced number of immune cells infiltrated the tumor microenvironment when COMP expression was detected. This phenomenon could be attributed to the denser collagen deposits, a hallmark of tumor fibrosis observed in COMP-expressing tumors.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Humans , Cartilage Oligomeric Matrix Protein , Prognosis , Collagen , Tumor Microenvironment
9.
J Transl Med ; 22(1): 351, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615020

ABSTRACT

BACKGROUND: Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS: To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS: Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-ß. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active ß-catenin in ovarian cancer cells. CONCLUSION: This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.


Subject(s)
Ovarian Neoplasms , Humans , Animals , Mice , Female , Cartilage Oligomeric Matrix Protein , Receptor, Notch3 , Carcinogenesis , Signal Transduction
10.
Brain Behav Immun ; 119: 317-332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552925

ABSTRACT

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.


Subject(s)
Brain , Membrane Proteins , Mice, Knockout , Neurons , Synapses , Animals , Humans , Mice , Brain/metabolism , Cells, Cultured , Complement C3/metabolism , Complement System Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Microglia/metabolism , Neurons/metabolism , Synapses/metabolism , Thalamus/metabolism
11.
Pharmacol Res ; 205: 107259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871237

ABSTRACT

The osteopontin-derived peptide FOL-005 stimulates hair growth. Using ligand-receptor glyco-capture technology we identified neuropilin-1 (NRP-1), a known co-receptor for vascular endothelial growth factor (VEGF) receptors, as the most probable receptor for FOL-005 and the more stable analogue FOL-026. X-ray diffraction and microscale thermophoresis analysis revealed that FOL-026 shares binding site with VEGF in the NRP-1 b1-subdomain. Stimulation of human umbilical vein endothelial cells with FOL-026 resulted in phosphorylation of VEGFR-2, ERK1/2 and AKT, increased cell growth and migration, stimulation of endothelial tube formation and inhibition of apoptosis in vitro. FOL-026 also promoted angiogenesis in vivo as assessed by subcutaneous Matrigel plug and hind limb ischemia models. NRP-1 knock-down or treatment of NRP-1 antagonist EG00229 blocked the stimulatory effects of FOL-026 on endothelial cells. Exposure of human coronary artery smooth muscle cells to FOL-026 stimulated cell growth, migration, inhibited apoptosis, and induced VEGF gene expression and VEGFR-2/AKT phosphorylation by an NRP-1-dependent mechanism. RNA sequencing showed that FOL-026 activated pathways involved in tissue repair. These findings identify NRP-1 as the receptor for FOL-026 and show that its biological effects mimic that of growth factors binding to the VEGF receptor family. They also suggest that FOL-026 may have therapeutical potential in conditions that require vascular repair and/or enhanced angiogenesis.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Neuropilin-1 , Osteopontin , Neuropilin-1/metabolism , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Animals , Neovascularization, Physiologic/drug effects , Osteopontin/metabolism , Osteopontin/genetics , Cell Movement/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Male , Peptides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Apoptosis/drug effects , Mice, Inbred C57BL , Protein Binding , Ischemia/drug therapy , Ischemia/metabolism , Mice , Angiogenesis
12.
Microbiology (Reading) ; 169(9)2023 09.
Article in English | MEDLINE | ID: mdl-37668351

ABSTRACT

Complement offers a first line of defence against infection through the opsonization of microbial pathogens, recruitment of professional phagocytes to the infection site and the coordination of inflammatory responses required for the resolution of infection. Staphylococcus aureus is a successful pathogen that has developed multiple mechanisms to thwart host immune responses. Understanding the precise strategies employed by S. aureus to bypass host immunity will be paramount for the development of vaccines and or immunotherapies designed to prevent or limit infection. To gain a better insight into the specific immune evasion mechanisms used by S. aureus we examined the pathogen's interaction with the soluble complement inhibitor, C4b-binding protein (C4BP). Previous studies indicated that S. aureus recruits C4BP using a specific cell-wall-anchored surface protein and that bound C4BP limits complement deposition on the staphylococcal surface. Using flow-cytometric-based bacterial-protein binding assays we observed no interaction between S. aureus and C4BP. Moreover, we offer a precautionary warning that C4BP isolated from plasma can be co-purified with minute quantities of human IgG, which can distort binding analysis between S. aureus and human-derived proteins. Combined our data indicates that recruitment of C4BP is not a complement evasion strategy employed by S. aureus.


Subject(s)
Complement C4b-Binding Protein , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Complement System Proteins , Staphylococcus , Membrane Proteins
13.
PLoS Pathog ; 17(7): e1009801, 2021 07.
Article in English | MEDLINE | ID: mdl-34324600

ABSTRACT

Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.


Subject(s)
Bacterial Proteins/genetics , Borrelia burgdorferi/growth & development , Lyme Disease/immunology , Lyme Disease/transmission , Viral Tropism/physiology , Animals , Bacterial Proteins/metabolism , Biological Evolution , Borrelia burgdorferi/genetics , Borrelia burgdorferi/immunology , Complement Factor H/metabolism , Host-Pathogen Interactions/physiology , Humans , Immune Evasion/physiology , Mice , Quail , Species Specificity , Ticks
14.
Pharmacol Res ; 197: 106948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806602

ABSTRACT

The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(ß-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(ß-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(ß-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(ß-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(ß-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Immunomodulation , Inflammation , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Myeloid Cells
15.
J Immunol ; 207(6): 1566-1577, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34433620

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.


Subject(s)
Bacteremia/immunology , Bacterial Outer Membrane Proteins/metabolism , Complement C4b-Binding Protein/metabolism , Haemophilus Infections/immunology , Haemophilus influenzae/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Tonsillitis/immunology , Aged , Aged, 80 and over , Bacteremia/genetics , Bacterial Outer Membrane Proteins/genetics , Child , Complement System Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Humans , Ligands , Male , Middle Aged , Organisms, Genetically Modified , Protein Binding/genetics , Pulmonary Disease, Chronic Obstructive/microbiology , Recombinant Proteins/metabolism , Signal Transduction/genetics , Tonsillitis/microbiology
16.
Platelets ; 34(1): 2159019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36636835

ABSTRACT

Increased platelet destruction is central in the pathogenesis of immune thrombocytopenia. However, impaired platelet production is also relevant and its significance underlies the rationale for treatment with thrombopoietin receptor agonists (TPO-RAs). Previous studies have associated enhanced complement activation with increased disease severity. Additionally, treatment refractoriness has been demonstrated to resolve by the administration of complement-targeted therapeutics in a subset of patients. The association between complement activation and the platelet response to TPO-RA therapy has previously not been investigated. In this study, blood samples from patients with immune thrombocytopenia (n = 15) were prospectively collected before and two, six and 12 weeks after the initiation of TPO-RA therapy. Plasma levels of complement degradation product C4d and soluble terminal complement complexes were assessed. Patients with significantly elevated baseline levels of terminal complement complexes exhibited more often an inadequate platelet response (p = .04), were exclusively subjected to rescue therapy with intravenous immunoglobulin (p = .02), and did not respond with a significant platelet count increase during the study period. C4d showed a significant (p = .01) ability to distinguish samples with significant terminal complement activation, implying engagement of the classical complement pathway. In conclusion, elevated levels of complement biomarkers were associated with a worse TPO-RA treatment response. Larger studies are needed to confirm these results. Biomarkers of complement activation may prove valuable as a prognostic tool to predict which patients that potentially could benefit from complement-inhibiting therapy in the future.


What is the context?Primary immune thrombocytopenia (ITP) is a potentially serious illness associated with an increased risk of bleeds. Manifestations range from confined skin bruising to life-threatening intracranial hemorrhages.It is an acquired immune disorder characterized by increased destruction and impaired production of platelets.Treatments aim at suppressing the destruction and supporting the production of platelets.Thrombopoietin receptor agonists (TPO-RA) are medically approved platelet growth factors that contribute to the generation of new platelets.The complement system is an evolutionary preserved part of innate immunity.Previous studies have indicated that complement activation may be an important contributor to disease and that the administration of complement-inhibiting therapy improves the platelet count in a subset of patients with primary ITP.What is new? The potential association between complement activation and a poor platelet response to TPO-RA therapy in primary ITP has not been previously studied.In fifteen patients with primary ITP starting TPO-RA therapy, we prospectively followed the platelet response and levels of complement biomarkers for 12 weeks.We showed that patients with high levels of complement biomarkers exhibited a worse treatment response during the study period.What is the impact?Our results suggest that levels of complement biomarkers may be valuable to predict which patients with treatment-refractory ITP that potentially could benefit from complement-inhibiting therapy in the futureLarger studies are needed to confirm our results.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Receptors, Thrombopoietin/agonists , Prospective Studies , Biomarkers , Complement Activation , Thrombopoietin/pharmacology , Thrombopoietin/therapeutic use , Recombinant Fusion Proteins
17.
Cell Mol Life Sci ; 79(6): 291, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546365

ABSTRACT

Complement C3 was originally regarded as a serum effector protein, although recent data has emerged suggesting that intracellular C3 can also regulate basic cellular processes. Despite the growing interest in intracellular C3 functions, the mechanism behind its generation has not been demonstrated. In this study we show that C3 can be expressed from an alternative translational start site, resulting in C3 lacking the signal peptide, which is therefore translated in the cytosol. In contrast to the secreted form, alternatively translated cytosolic C3 is not glycosylated, is present mainly in a reduced state, and is turned over by the ubiquitin-proteasome system. C3 can also be retrotranslocated from the endoplasmic reticulum into the cytosol, structurally resembling secreted C3. Finally, we demonstrate that intracellular cytosolic C3 can opsonize invasive Staphylococcus aureus within epithelial cell, slowing vacuolar escape as well as impacting bacterial survival on subsequent exposure to phagocytes. Our work therefore reveals the existence and origin of intracellular, cytosolic C3, and demonstrates functions for cytosolic C3 in intracellular detection of cytoinvasive pathogens.


Subject(s)
Complement C3 , Proteasome Endopeptidase Complex , Bacteria/metabolism , Complement C3/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Proteasome Endopeptidase Complex/metabolism
18.
Hum Mol Genet ; 29(14): 2313-2324, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32510551

ABSTRACT

Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Complement Factor I/genetics , Fibrinogen/genetics , Macular Degeneration/genetics , Aged , Aged, 80 and over , Alleles , Atypical Hemolytic Uremic Syndrome/blood , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Macular Degeneration/blood , Macular Degeneration/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
19.
Proc Biol Sci ; 289(1969): 20212087, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193398

ABSTRACT

Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi (Bb), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C (ospC) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Lyme Disease , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi Group/genetics , Host Adaptation , Peromyscus , Phenotype
20.
J Immunol ; 204(10): 2779-2790, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32253242

ABSTRACT

We identified apolipoprotein E (ApoE) as one of the proteins that are found in complex with complement component C4d in pooled synovial fluid of rheumatoid arthritis (RA) patients. Immobilized human ApoE activated both the classical and the alternative complement pathways. In contrast, ApoE in solution demonstrated an isoform-dependent inhibition of hemolysis and complement deposition at the level of sC5b-9. Using electron microscopy imaging, we confirmed that ApoE interacts differently with C1q depending on its context; surface-bound ApoE predominantly bound C1q globular heads, whereas ApoE in a solution favored the hinge/stalk region of C1q. As a model for the lipidated state of ApoE in lipoprotein particles, we incorporated ApoE into phosphatidylcholine/phosphatidylethanolamine liposomes and found that the presence of ApoE on liposomes increased deposition of C1q and C4b from serum when analyzed using flow cytometry. In addition, posttranslational modifications associated with RA, such as citrullination and oxidation, reduced C4b deposition, whereas carbamylation enhanced C4b deposition on immobilized ApoE. Posttranslational modification of ApoE did not alter C1q interaction but affected binding of complement inhibitors factor H and C4b-binding protein. This suggests that changed ability of C4b to deposit on modified ApoE may play an important role. Our data show that posttranslational modifications of ApoE alter its interactions with complement. Moreover, ApoE may play different roles in the body depending on its solubility, and in diseased states such as RA, deposited ApoE may induce local complement activation rather than exert its typical role of inhibition.


Subject(s)
Apolipoproteins E/metabolism , Arthritis, Rheumatoid/immunology , Complement C1q/metabolism , Joints/immunology , Synovial Fluid/immunology , Complement Activation , Complement C4b-Binding Protein/metabolism , Complement Factor H/metabolism , Humans , Protein Binding , Protein Processing, Post-Translational , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL