Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Mol Cancer ; 13: 174, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25033833

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is characterized by lack of expression of both estrogen and progesterone receptor as well as lack of overexpression or amplification of HER2. Despite an increased probability of response to chemotherapy, many patients resistant to current chemotherapy regimens suffer from a worse prognosis compared to other breast cancer subtypes. However, molecular determinants of response to chemotherapy specific to TNBC remain largely unknown. Thus, there is a high demand for biomarkers potentially stratifying triple negative breast cancer patients for neoadjuvant chemotherapies or alternative therapies. METHODS: In order to identify genes correlating with both the triple negative breast cancer subtype as well as response to neoadjuvant chemotherapy we employed publicly available gene expression profiles of patients, which had received neoadjuvant chemotherapy. Analysis of tissue microarrays as well as breast cancer cell lines revealed correlation to the triple negative breast cancer subtype. Subsequently, effects of siRNA-mediated knockdown on response to standard chemotherapeutic agents as well as radiation therapy were analyzed. Additionally, we evaluated the molecular mechanisms by which SFRP1 alters the carcinogenic properties of breast cancer cells. RESULTS: SFRP1 was identified as being significantly overexpressed in TNBC compared to other breast cancer subtypes. Additionally, SFRP1 expression is significantly correlated with an increased probability of positive response to neoadjuvant chemotherapy. Knockdown of SFRP1 in triple negative breast cancer cells renders the cells more resistant to standard chemotherapy. Moreover, tumorigenic properties of the cells are modified by knockdown, as shown by both migration or invasion capacity as well reduced apoptotic events. Surprisingly, we found that these effects do not rely on Wnt signaling. Furthermore, we show that pro-apoptotic as well as migratory pathways are differentially regulated after SFRP1 knockdown. CONCLUSION: We could firstly show that SFRP1 strongly correlates with the triple negative breast cancer subtype and secondly, that SFRP1 might be used as a marker stratifying patients to positively respond to neoadjuvant chemotherapy. The mechanisms by which tumor suppressor SFRP1 influences carcinogenic properties of cancer cells do not rely on Wnt signaling, thereby demonstrating the complexity of tumor associated signaling pathways.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Humans , Neoadjuvant Therapy , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
3.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36639156

ABSTRACT

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Subject(s)
Cerebellar Neoplasms , Glioblastoma , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , NF-kappa B/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Protein Glutamine gamma Glutamyltransferase 2 , Quality of Life , Phagocytosis , Macrophages , Inflammation/metabolism
4.
Neuro Oncol ; 24(9): 1509-1523, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35307743

ABSTRACT

BACKGROUND: Intratumoral heterogeneity is crucially involved in metastasis, resistance to therapy, and cancer relapse. Amplifications of the proto-oncogene MYC display notable heterogeneity at the single-cell level and are associated with a particularly dismal prognosis in high-risk medulloblastomas (MBs). The aim of this study was to establish the relevance of interclonal cross-talk between MYC-driven and non-MYC-driven MB cells. METHODS: We used fluorescence in situ hybridization, single-cell transcriptomics, and immunohistochemistry, in vitro isogenic cell models, non-targeted proteomics, mass spectrometry-based metabolite quantification, HUVECs tube formation assay, and orthotopic in vivo experiments to investigate interclonal cross-talk in MB. RESULTS: We found that the release of lactate dehydrogenase A (LDHA) from MYC-driven cells facilitates metastatic seeding and outgrowth, while secretion of dickkopf WNT signaling pathway inhibitor 3 from non-MYC-driven cells promotes tumor angiogenesis. This tumor-supporting interaction between both subclones was abrogated by targeting the secretome through pharmacological and genetic inhibition of LDHA, which significantly suppressed tumor cell migration. CONCLUSION: Our study reveals the functional relevance of clonal diversity and highlights the therapeutic potential of targeting the secretome to interrupt interclonal communication and progression in high-risk MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Cerebellar Neoplasms/pathology , Humans , In Situ Hybridization, Fluorescence , Medulloblastoma/pathology , Prognosis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
5.
Cell Death Dis ; 13(9): 806, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127323

ABSTRACT

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.


Subject(s)
Brain Neoplasms , Rhabdoid Tumor , Teratoma , Animals , Brain Neoplasms/genetics , Cilia/metabolism , DNA Helicases/metabolism , Humans , Mice , Nuclear Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , Signal Transduction , Teratoma/genetics , Teratoma/pathology , Transcription Factors/genetics , Transcription Factors/therapeutic use
6.
Nat Commun ; 13(1): 4061, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831316

ABSTRACT

Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , RNA, Long Noncoding , Animals , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/genetics , Dyneins/metabolism , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/genetics , Membrane Glycoproteins/metabolism , Mice , MicroRNAs/genetics , RNA, Long Noncoding/genetics
7.
Cell Death Dis ; 12(10): 885, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584066

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.


Subject(s)
Glioblastoma/genetics , Glioblastoma/radiotherapy , MicroRNAs/metabolism , Radiation Tolerance/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Survival/genetics , Clone Cells , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Mice, Nude , MicroRNAs/genetics , Mitochondria/metabolism , Neoplasm Invasiveness , Phenotype , Prognosis , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Proteogenomics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
8.
Cancer Lett ; 430: 34-46, 2018 08 28.
Article in English | MEDLINE | ID: mdl-29753759

ABSTRACT

Targeting of oncogene-driven replicative stress as therapeutic option for high-risk medullobastoma was assessed using a panel of medulloblastoma cells differing in their c-Myc expression [i.e. group SHH (c-Myc low) vs. group 3 (c-Myc high)]. High c-Myc levels were associated with hypersensitivity to pharmacological Chk1 and ATR inhibition but not to CDK inhibition nor to conventional (genotoxic) anticancer therapeutics. The enhanced sensitivity of group 3 medulloblastoma cells to Chk1 inhibitors likely results from enhanced damage to intracellular organelles, elevated replicative stress and DNA damage and activation of apoptosis/necrosis. Furthermore, Chk1 inhibition differentially affected c-Myc expression and functions. In c-Myc high cells, Chk1 blockage decreased c-Myc and p-GSK3α protein and increased p21 and GADD45A mRNA expression. By contrast, c-Myc low cells revealed increased p-GSK3ß protein and CHOP and DUSP1 mRNA levels. Inhibition of Chk1 sensitized medulloblastoma cells to additional replication stress evoked by cisplatin independent of c-Myc. Importantly, Chk1 inhibition only caused minor toxicity in primary rat neurons in vitro. Collectively, targeting of ATR/Chk1 effectively triggers death in high-risk medulloblastoma, potentiates the anticancer efficacy of cisplatin and is well tolerated in non-cancerous neuronal cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Checkpoint Kinase 1/antagonists & inhibitors , Medulloblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ataxia Telangiectasia Mutated Proteins/metabolism , Caenorhabditis elegans , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Drug Synergism , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Neurons/drug effects , Primary Cell Culture , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/genetics , Thiophenes/pharmacology , Thiophenes/therapeutic use , Toxicity Tests , Urea/analogs & derivatives , Urea/pharmacology , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL