Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 387(2): 148-159, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35830641

ABSTRACT

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy is an important cause of death as well as long-term disability in survivors. Erythropoietin has been hypothesized to have neuroprotective effects in infants with hypoxic-ischemic encephalopathy, but its effects on neurodevelopmental outcomes when given in conjunction with therapeutic hypothermia are unknown. METHODS: In a multicenter, double-blind, randomized, placebo-controlled trial, we assigned 501 infants born at 36 weeks or more of gestation with moderate or severe hypoxic-ischemic encephalopathy to receive erythropoietin or placebo, in conjunction with standard therapeutic hypothermia. Erythropoietin (1000 U per kilogram of body weight) or saline placebo was administered intravenously within 26 hours after birth, as well as at 2, 3, 4, and 7 days of age. The primary outcome was death or neurodevelopmental impairment at 22 to 36 months of age. Neurodevelopmental impairment was defined as cerebral palsy, a Gross Motor Function Classification System level of at least 1 (on a scale of 0 [normal] to 5 [most impaired]), or a cognitive score of less than 90 (which corresponds to 0.67 SD below the mean, with higher scores indicating better performance) on the Bayley Scales of Infant and Toddler Development, third edition. RESULTS: Of 500 infants in the modified intention-to-treat analysis, 257 received erythropoietin and 243 received placebo. The incidence of death or neurodevelopmental impairment was 52.5% in the erythropoietin group and 49.5% in the placebo group (relative risk, 1.03; 95% confidence interval [CI], 0.86 to 1.24; P = 0.74). The mean number of serious adverse events per child was higher in the erythropoietin group than in the placebo group (0.86 vs. 0.67; relative risk, 1.26; 95% CI, 1.01 to 1.57). CONCLUSIONS: The administration of erythropoietin to newborns undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy did not result in a lower risk of death or neurodevelopmental impairment than placebo and was associated with a higher rate of serious adverse events. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT02811263.).


Subject(s)
Erythropoietin , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Administration, Intravenous , Cerebral Palsy/etiology , Double-Blind Method , Erythropoietin/administration & dosage , Erythropoietin/adverse effects , Erythropoietin/therapeutic use , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/adverse effects , Neuroprotective Agents/therapeutic use
2.
Dev Neurosci ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906983

ABSTRACT

INTRODUCTION: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries. METHODS: This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 - 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates >36 weeks' gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system. RESULTS: Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR 4.5 - 5.8). The incidence of injury to the deep grey nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n=414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups. CONCLUSION: Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.

3.
J Pediatr ; 261: 113560, 2023 10.
Article in English | MEDLINE | ID: mdl-37321289

ABSTRACT

OBJECTIVE: To determine cerebral glucose concentration and its relationship with glucose infusion rate (GIR) and blood glucose concentration in neonatal encephalopathy during therapeutic hypothermia (TH). METHODS: This was an observational study in which cerebral glucose during TH was quantified by magnetic resonance (MR) spectroscopy and compared with mean blood glucose at the time of scan. Clinical data (gestational age, birth weight, GIR, sedative use) that could affect glucose use were collected. The severity and pattern of brain injury on MR imaging were scored by a neuroradiologist. Student t test, Pearson correlation, repeated measures ANOVA, and multiple regression analysis were performed. RESULTS: Three-hundred-sixty blood glucose values and 402 MR spectra from 54 infants (30 female infants; mean gestational age 38.6 ± 1.9 weeks) were analyzed. In total, 41 infants had normal-mild and 13 had moderate-severe injury. Median GIR and blood glucose during TH were 6.0 mg/kg/min (IQR 5-7) and 90 mg/dL (IQR 80-102), respectively. GIR did not correlate with blood or cerebral glucose. Cerebral glucose was significantly greater during than after TH (65.9 ± 22.9 vs 60.0 ± 25.2 mg/dL, P < .01), and there was a significant correlation between blood glucose and cerebral glucose during TH (basal ganglia: r = 0.42, thalamus: r = 0.42, cortical gray matter: r = 0.39, white matter: r = 0.39, all P < .01). There was no significant difference in cerebral glucose concentration in relation to injury severity or pattern. CONCLUSIONS: During TH, cerebral glucose concentration is partly dependent on blood glucose concentration. Further studies to understand brain glucose use and optimal glucose concentrations during hypothermic neuroprotection are needed.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Humans , Female , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/pathology , Blood Glucose , Hypothermia, Induced/adverse effects , Hypothermia, Induced/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
4.
Pediatr Res ; 94(3): 1018-1025, 2023 09.
Article in English | MEDLINE | ID: mdl-36859442

ABSTRACT

BACKGROUND: In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS: Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS: Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION: In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT: Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes.


Subject(s)
Brain Injuries , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Humans , Infant, Newborn , Infant , Child, Preschool , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/complications , Magnetic Resonance Imaging/methods , Neuroimaging , Magnetic Resonance Spectroscopy , Hypothermia, Induced/methods , Brain Injuries/complications , Brain Injuries/diagnostic imaging , Brain Injuries/therapy
5.
Neuroradiology ; 64(6): 1111-1126, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35224679

ABSTRACT

Proton MRS of the brain provides the ability to gather direct information regarding the metabolic status of the brain at the time of MRI. Although selective vulnerability of brain tissue may yield distinct imaging patterns in neurometabolic disorders, it is not uncommon for the brain MRI to be normal, nonspecific, or show ambiguous abnormalities among several possible diagnoses, metabolic, or otherwise. This review highlights childhood neurometabolic diseases in which 1H MRS may show diagnostic or suggestive metabolic profiles without complicated acquisition or postprocessing techniques.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/metabolism , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy
6.
Neuroradiology ; 64(6): 1101-1110, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35178593

ABSTRACT

Despite its vigorous ability to detect and measure metabolic disturbances, 1H MRS remains underutilized in clinical practice. MRS increases diagnostic yield and provides therapeutic measures. Because many inborn metabolic errors are now treatable, early diagnosis is crucial to prevent or curb permanent brain injury. Therefore, patients with known or suspected inborn metabolic errors stand to benefit from the addition of MRS. With education and practice, all neuroradiologists can perform and interpret MRS notwithstanding their training and prior experience. In this two-part review, we cover the requisite concepts for clinical MRS interpretation including technical considerations and normal brain spectral patterns based on age, location, and methodology.


Subject(s)
Brain , Brain/diagnostic imaging , Brain/metabolism , Early Diagnosis , Humans , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy
7.
Prenat Diagn ; 41(2): 190-199, 2021 01.
Article in English | MEDLINE | ID: mdl-33191511

ABSTRACT

BACKGROUND: Fetal magnetic resonance imaging (MRI) and spectroscopy (MRS) provide a unique opportunity to non-invasively measure markers of neurodevelopment in survivors of twin-twin transfusion syndrome (TTTS). OBJECTIVE: To characterize fetal brain maturation after laser surgery for TTTS by measuring brain volumes and cerebral metabolite concentrations using fetal MRI + MRS. STUDY DESIGN: Prospective study of dual surviving fetuses treated with laser surgery for TTTS. At 4-5 postoperative weeks, fetal MRI was used together with novel image analysis to automatically extract major brain tissue volumes. Fetal MRS was used to measure major metabolite concentrations in the fetal brain. RESULTS: Twenty-one twin pairs were studied. The average (±SD) gestational age at MRI was 25.89 (±2.37) weeks. Total brain volume (TBV) was lower in the donors, although cerebral volumes were not different between twin pairs. Recipients showed lower proportions of cortical and cerebellar volumes, normalized to TBV and cerebral volumes. MRS data showed that biochemical differences between twin brains were related to discrepancy in their brain volumes. CONCLUSION: Although donors have a smaller TBV compared to recipients, proportionality of brain tissue volumes are preserved in donors. MRS maturational markers of fetal brain development show that recovery in donors persists 4 weeks after surgery.


Subject(s)
Brain/diagnostic imaging , Fetal Therapies , Fetofetal Transfusion/surgery , Laser Coagulation , Adult , Brain/embryology , Brain/metabolism , Female , Fetofetal Transfusion/diagnostic imaging , Fetofetal Transfusion/metabolism , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Organ Size , Pregnancy , Recovery of Function , Treatment Outcome , Young Adult
8.
J Pediatr ; 220: 73-79.e3, 2020 05.
Article in English | MEDLINE | ID: mdl-32089332

ABSTRACT

OBJECTIVE: To assess differences in regional brain temperatures during whole-body hypothermia and test the hypothesis that brain temperature profile is nonhomogenous in infants with hypoxic-ischemic encephalopathy. STUDY DESIGN: Infants with hypoxic-ischemic encephalopathy were enrolled prospectively in this observational study. Magnetic resonance (MR) spectra of basal ganglia, thalamus, cortical gray matter, and white matter (WM) were acquired during therapeutic hypothermia. Regional brain tissue temperatures were calculated from the chemical shift difference between water signal and metabolites in the MR spectra after performing calibration measurements. Overall difference in regional temperature was analyzed by mixed-effects model; temperature among different patterns and severity of injury on MR imaging also was analyzed. Correlation between temperature and depth of brain structure was analyzed using repeated-measures correlation. RESULTS: In total, 53 infants were enrolled (31 girls, mean gestational age: 38.6 ± 2 weeks; mean birth weight: 3243 ± 613 g). MR spectroscopy was acquired at mean age of 2.2 ± 0.6 days. A total of 201 MR spectra were included in the analysis. The thalamus, the deepest structure (36.4 ± 2.3 mm from skull surface), was lowest in temperature (33.2 ± 0.8°C, compared with basal ganglia: 33.5 ± 0.9°C; gray matter: 33.6 ± 0.7°C; WM: 33.8 ± 0.9°C, all P < .001). Temperatures in more superficial gray matter and WM regions (depth: 21.9 ± 2.4 and 21.5 ± 2.2 mm) were greater than the rectal temperatures (33.4 ± 0.4°C, P < .03). There was a negative correlation between temperature and depth of brain structure (rrm = -0.36, P < .001). CONCLUSIONS: Whole-body hypothermia was effective in cooling deep brain structures, whereas superficial structures were warmer, with temperatures significantly greater than rectal temperatures.


Subject(s)
Body Temperature/physiology , Brain/diagnostic imaging , Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Brain/physiology , Female , Humans , Infant , Infant, Newborn , Male , Prospective Studies , Rectum/physiology , Thermometry
9.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30003207

ABSTRACT

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Subject(s)
Biological Products/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Reproducibility of Results
11.
Hum Brain Mapp ; 39(11): 4593-4610, 2018 11.
Article in English | MEDLINE | ID: mdl-30076775

ABSTRACT

Neonates with complex congenital heart disease (CHD) demonstrate microstructural brain dysmaturation, but the relationship with structural network topology is unknown. We performed diffusion tensor imaging (DTI) in term neonates with CHD preoperatively (N = 61) and postoperatively (N = 50) compared with healthy term controls (N = 91). We used network topology (graph) analyses incorporating different weighted and unweighted approaches and subject-specific white matter segmentation to investigate structural topology differences, as well as a voxel-based analysis (VBA) to confirm the presence of microstructural dysmaturation. We demonstrate cost-dependent network inefficiencies in neonatal CHD in the pre- and postoperative period compared with controls, related to microstructural differences. Controlling for cost, we show the presence of increased small-worldness (hierarchical fiber organization) in CHD infants preoperatively, that persists in the postoperative period compared with controls, suggesting the early presence of brain reorganization. Taken together, topological microstructural dysmaturation in CHD infants is accompanied by hierarchical fiber organization during a protracted critical period of early brain development. Our methodology also provides a pipeline for quantitation of network topology changes in neonates and infants with microstructural brain dysmaturation at risk for perinatal brain injury.


Subject(s)
Brain/diagnostic imaging , Heart Defects, Congenital/diagnostic imaging , Brain/growth & development , Diffusion Tensor Imaging , Female , Heart Defects, Congenital/surgery , Humans , Infant, Newborn , Male , Neural Pathways/diagnostic imaging , Neural Pathways/growth & development , Prospective Studies
12.
Childs Nerv Syst ; 34(9): 1677-1682, 2018 09.
Article in English | MEDLINE | ID: mdl-29876643

ABSTRACT

PURPOSE: Abnormal cerebrospinal fluid (CSF) dynamics can produce a number of significant clinical problems to include hydrocephalus, loculated areas within the ventricles or subarachnoid spaces as well as impairment of normal CSF movement between the cranial and spinal compartments that can result in a cerebellar ectopia and hydrosyringomyelia. Thus, assessing the patency of fluid flow between adjacent CSF compartments non-invasively by magnetic resonance imaging (MRI) has definite clinical value. Our objective was to demonstrate that a novel tag-based CSF imaging methodology offers improved contrast when compared with a commercially available application. METHODS: In a prospective study, ten normal healthy adult subjects were examined on 3T magnets with time-spatial labeling inversion pulse (Time-SLIP) and a new tag-based flow technique-time static tagging and mono-contrast preservation (Time-STAMP). The image contrast was calculated for dark-untagged CSF and bright-flowing CSF. We tested the results with the D'Agostino and Pearson normality test and Friedman's test with Dunn's multiple comparison correction for significance. Separately 96 pediatric patients were evaluated using the Time-STAMP method. RESULTS: In healthy adults, contrasts were consistently higher with Time-STAMP than Time-SLIP (p < 0.0001, in all ROI comparisons). The contrast between untagged CSF and flowing tagged CSF improved by 15 to 34%. In both healthy adults and pediatric patients, CSF flow between adjacent fluid compartments was demonstrated. CONCLUSIONS: Time-STAMP provided images with higher contrast than Time-SLIP, without diminishing the ability to visualize qualitative CSF movement and between adjacent fluid compartments.


Subject(s)
Cerebral Ventricles/diagnostic imaging , Cerebrospinal Fluid/diagnostic imaging , Hydrocephalus/diagnostic imaging , Magnetic Resonance Imaging/methods , Spin Labels , Adolescent , Adult , Cerebral Ventricles/chemistry , Cerebrospinal Fluid/chemistry , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Time Factors , Young Adult
13.
Magn Reson Med ; 78(2): 452-456, 2017 08.
Article in English | MEDLINE | ID: mdl-27529659

ABSTRACT

PURPOSE: To determine whether the chemical shift of residual N-acetylaspartate (NAA) signal in pilocytic astrocytomas (PA) is consistent with the position of the NAA peak in controls. METHODS: MR spectra from 27 pediatric World Health Organization (WHO) grade I pilocytic astrocytoma patients, fifteen patients with WHO grade II and high-grade (III-IV) astrocytomas, and 36 controls were analyzed. All spectra were acquired with a short echo time (35 ms), single voxel point-resolved spectroscopy sequence on clinical 3 tesla scanners. Fully automated LCModel software was used for processing, which included the fitting of peak positions for NAA and creatine (Cr). RESULTS: The chemical shift difference between the NAA and Cr peaks was significantly smaller (by 0.016 ± 0.005 parts per million, P < 1e-10) in PAs than in controls and was also smaller than what was observed in infiltrative astrocytomas. CONCLUSION: The chemical shift position of the residual NAA peak in PAs is not consistent with NAA. The signal likely originates from an N-acetyl group of one or more other chemicals such as N-acetylated sugars. Magn Reson Med 78:452-456, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Aspartic Acid/analogs & derivatives , Astrocytoma/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Aspartic Acid/analysis , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Child , Child, Preschool , Humans , Infant
14.
J Pediatr ; 183: 67-73.e1, 2017 04.
Article in English | MEDLINE | ID: mdl-28109537

ABSTRACT

OBJECTIVE: To determine associations between patient and clinical factors with postnatal brain metabolism in term neonates with congenital heart disease (CHD) via the use of quantitative magnetic resonance spectroscopy. STUDY DESIGN: Neonates with CHD were enrolled prospectively to undergo pre- and postoperative 3T brain magnetic resonance imaging. Short-echo single-voxel magnetic resonance spectroscopy of parietal white matter was used to quantify metabolites related to brain maturation (n-acetyl aspartate, choline, myo- inositol), neurotransmitters (glutamate and gamma-aminobutyric acid), energy metabolism (glutamine, citrate, glucose, and phosphocreatine), and injury/apoptosis (lactate and lipids). Multivariable regression was performed to search for associations between (1) patient-specific/prenatal/preoperative factors with concurrent brain metabolism and (2) intraoperative and postoperative factors with postoperative brain metabolism. RESULTS: A total of 83 magnetic resonance images were obtained on 55 subjects. No patient-specific, prenatal, or preoperative factors associated with concurrent metabolic brain dysmaturation or elevated lactate could be identified. Chromosome 22q11 microdeletion and age at surgery were predictive of altered concurrent white matter phosphocreatine (P < .0055). The only significant intraoperative association found was increased deep hypothermic circulatory arrest time with reduced postoperative white matter glutamate and gamma-aminobutyric acid (P < .0072). Multiple postoperative factors, including increased number of extracorporeal membrane oxygenation days (P < .0067), intensive care unit, length of stay (P < .0047), seizures in the intensive care unit (P < .0009), and home antiepileptic use (P < .0002), were associated with reduced postoperative white matter n-acetyl aspartate. CONCLUSION: Multiple postoperative factors were found to be associated with altered brain metabolism in term infants with CHD, but not patient-specific, preoperative, or intraoperative factors.


Subject(s)
Brain/metabolism , Heart Defects, Congenital/surgery , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Biomarkers/metabolism , Birth Weight , Brain/diagnostic imaging , Cohort Studies , Female , Gestational Age , Glutamine/metabolism , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/mortality , Humans , Infant, Newborn , Lactic Acid/metabolism , Male , Monitoring, Intraoperative/methods , Multivariate Analysis , Phosphocreatine/metabolism , Preoperative Care/methods , Prognosis , Prospective Studies , Regression Analysis , Risk Assessment , Survival Rate , Term Birth , Treatment Outcome
15.
J Appl Clin Med Phys ; 17(3): 442-451, 2016 05 08.
Article in English | MEDLINE | ID: mdl-27167268

ABSTRACT

The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.


Subject(s)
Contract Services/standards , Diffusion Tensor Imaging/instrumentation , Diffusion Tensor Imaging/standards , Head/anatomy & histology , Phantoms, Imaging/standards , Quality Assurance, Health Care/methods , Quality Assurance, Health Care/standards , Humans , Signal-To-Noise Ratio
16.
J Neurooncol ; 122(2): 383-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25670389

ABSTRACT

Citrate, a tricarboxylic acid cycle intermediate, is present in high concentrations in pediatric diffuse intrinsic pontine gliomas (DIPG). Since citrate increases during hypoxia in animal studies, we hypothesized that it accumulates in DIPG when hypoperfused. Relative tumor blood volumes (rTBV) were determined, using dynamic susceptibility contrast-enhanced magnetic resonance imaging, in twelve children [median age 8.2 (range 3.2-14.5) years] with DIPG and compared to citrate concentrations measured with in vivo proton magnetic resonance spectroscopy ((1)H MRS). Tissue perfusion and metabolite concentration were assessed at initial presentation and over the clinical course, yielding 36 and 46 perfusion and MR spectroscopy datasets, respectively. At presentation, DIPG blood volume was 60 ± 27 % of that measured for normal cerebellum. Citrate, which is not detectable in normal brain tissue, was present in DIPG at concentrations of 3.81 ± 1.44 mmol/kg tissue. Over the course of the disease and treatment, rTBV increased and citrate decreased (both p < 0.05) with an inverse correlation (p = 0.028). Citrate accumulation is associated with tissue hypoperfusion in DIPG.


Subject(s)
Brain Stem Neoplasms/physiopathology , Brain/physiopathology , Cerebrovascular Circulation/physiology , Citrates/metabolism , Glioma/physiopathology , Adolescent , Blood Volume , Brain/blood supply , Brain Stem Neoplasms/therapy , Cerebral Angiography , Child , Child, Preschool , Contrast Media , Disease Progression , Female , Follow-Up Studies , Glioma/therapy , Humans , Magnetic Resonance Angiography , Male , Proton Magnetic Resonance Spectroscopy , Survival Analysis
17.
Neuroradiology ; 57(9): 951-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26141852

ABSTRACT

INTRODUCTION: The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. METHODS: Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. RESULTS: Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10% the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27% of cases the reports were wrong. For group B, the diagnoses were correct in 87%, partially correct in 5%, and incorrect in 8% of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87% correct, 7% partially correct, and 7% incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). CONCLUSION: Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors.


Subject(s)
Brain Neoplasms/diagnosis , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Multimodal Imaging , Child , Female , Humans , Male
18.
Neuroradiology ; 57(5): 515-25, 2015 May.
Article in English | MEDLINE | ID: mdl-25666231

ABSTRACT

INTRODUCTION: Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. METHODS: Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. RESULTS: Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. CONCLUSION: These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation.


Subject(s)
Thalamus/pathology , White Matter/metabolism , Humans , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Organ Size , Retrospective Studies
19.
Pediatr Cardiol ; 36(5): 960-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25608695

ABSTRACT

Preterm birth is associated with alteration in corticothalamic development, which underlies poor neurodevelopmental outcomes. Our hypothesis was that preterm neonates with CHD would demonstrate abnormal thalamic microstructure when compared to critically ill neonates without CHD. A secondary aim was to identify any association between thalamic microstructural abnormalities and perioperative clinical variables. We compared thalamic DTI measurements in 21 preterm neonates with CHD to two cohorts of neonates without CHD: 28 term and 27 preterm neonates, identified from the same neonatal intensive care unit. Comparison was made with three other selected white matter regions using ROI manual-based measurements. Correlation was made with post-conceptional age and perioperative clinical variables. In preterm neonates with CHD, there were age-related differences in thalamic diffusivity (axial and radial) compared to the preterm and term non-CHD group, in contrast to no differences in anisotropy. Contrary to our hypothesis, abnormal thalamic and optic radiation microstructure was most strongly associated with an elevated first arterial blood gas pO2 and elevated preoperative arterial blood gas pH (p < 0.05). Age-related thalamic microstructural abnormalities were observed in preterm neonates with CHD. Perinatal hyperoxemia and increased perioperative serum pH were associated with abnormal thalamic microstructure in preterm neonates with CHD. This study emphasizes the vulnerability of thalamocortical development in the preterm neonate with CHD.


Subject(s)
Brain/growth & development , Heart Defects, Congenital/pathology , Infant, Premature/growth & development , Thalamus/pathology , Acid-Base Equilibrium/physiology , Age Factors , Blood Gas Analysis , Case-Control Studies , Female , Heart Defects, Congenital/blood , Humans , Infant, Newborn , Male , Oxygen/blood , White Matter/pathology
20.
J Pediatr ; 165(6): 1129-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25151196

ABSTRACT

OBJECTIVE: To noninvasively determine brain temperature of neonates with hypoxic-ischemic encephalopathy (HIE) during and after therapeutic hypothermia. STUDY DESIGN: Using a phantom, we derived a calibration curve to calculate brain temperature based on chemical shift differences in magnetic resonance spectroscopy. We enrolled infants admitted for therapeutic hypothermia and assigned them to a moderate HIE (M-HIE) or severe HIE (S-HIE) group based on Sarnat staging. Rectal (core) temperature and magnetic resonance spectroscopy data used to derive regional brain temperatures (basal ganglia, thalamus, and cortical gray matter) were acquired concomitantly during and after therapeutic hypothermia. We compared brain and rectal temperature in the M-HIE and S-HIE groups during and after therapeutic hypothermia using 2-tailed t-tests. RESULTS: Eighteen patients (14 with M-HIE and 4 with S-HIE) were enrolled. As expected, both brain and rectal temperatures were lower during therapeutic hypothermia than after therapeutic hypothermia. Brain temperature in patients with S-HIE was higher than in those with M-HIE both during (35.1 ± 1.3°C vs 33.7 ± 1.2°C; P < .01) and after therapeutic hypothermia (38.1 ± 1.5°C vs 36.8 ± 1.3°C; P < .01). The brain-rectal temperature gradient was also greater in the S-HIE group both during and after therapeutic hypothermia. CONCLUSION: For this analysis of a small number of patients, brain temperature and brain-rectal temperature gradient were higher in neonates with S-HIE than in those with M-HIE during and after therapeutic hypothermia. Further studies are needed to determine whether further decreasing brain temperature in neonates with S-HIE is safe and effective in improving outcome.


Subject(s)
Body Temperature , Brain/physiology , Hypothermia, Induced , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/therapy , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Rectum/physiopathology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL