Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Publication year range
1.
J Arthroplasty ; 35(7S): S23-S27, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32354536

ABSTRACT

Care for patients during COVID-19 poses challenges that require the protection of staff with recommendations that health care workers wear at minimum, an N95 mask or equivalent while performing an aerosol-generating procedure with a face shield. The United States faces shortages of personal protective equipment (PPE), and surgeons who use loupes and headlights have difficulty using these in conjunction with face shields. Most arthroplasty surgeons use surgical helmet systems, but in the current pandemic, many hospitals have delayed elective arthroplasty surgeries and the helmet systems are going unused. As a result, the authors have begun retrofitting these arthroplasty helmets to serve as PPE. The purpose of this article is to outline the conception, design, donning technique, and safety testing of these arthroplasty helmets being repurposed as PPE.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Head Protective Devices , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/prevention & control , Printing, Three-Dimensional , Academic Medical Centers , Aerosols , COVID-19 , Coronavirus Infections/transmission , Health Personnel , Humans , Personal Protective Equipment/standards , Pneumonia, Viral/transmission , SARS-CoV-2 , United States
2.
J Med Imaging (Bellingham) ; 6(2): 021605, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31131288

ABSTRACT

Three-dimensional (3D) printing has significantly impacted the quality, efficiency, and reproducibility of preclinical magnetic resonance imaging. It has vastly expanded the ability to produce MR-compatible parts that readily permit customization of animal handling, achieve consistent positioning of anatomy and RF coils promptly, and accelerate throughput. It permits the rapid and cost-effective creation of parts customized to a specific imaging study, animal species, animal weight, or even one unique animal, not routinely used in preclinical research. We illustrate the power of this technology by describing five preclinical studies and specific solutions enabled by different 3D printing processes and materials. We describe fixtures, assemblies, and devices that were created to ensure the safety of anesthetized lemurs during an MR examination of their brain or to facilitate localized, contrast-enhanced measurements of white blood cell concentration in a mouse model of pancreatitis. We illustrate expansive use of 3D printing to build a customized birdcage coil and components of a ventilator to enable imaging of pulmonary gas exchange in rats using hyperpolarized Xe 129 . Finally, we present applications of 3D printing to create high-quality, dual RF coils to accelerate brain connectivity mapping in mouse brain specimens and to increase the throughput of brain tumor examinations in a mouse model of pituitary adenoma.

SELECTION OF CITATIONS
SEARCH DETAIL