Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 96(1): 133-149, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38767023

ABSTRACT

OBJECTIVE: The aim of our study is to better understand the genetic architecture and pathological mechanisms underlying neurodegeneration in idiopathic Parkinson's disease (iPD). We hypothesized that a fraction of iPD patients may harbor a combination of common variants in nuclear-encoded mitochondrial genes ultimately resulting in neurodegeneration. METHODS: We used mitochondria-specific polygenic risk scores (mitoPRSs) and created pathway-specific mitoPRSs using genotype data from different iPD case-control datasets worldwide, including the Luxembourg Parkinson's Study (412 iPD patients and 576 healthy controls) and COURAGE-PD cohorts (7,270 iPD cases and 6,819 healthy controls). Cellular models from individuals stratified according to the most significant mitoPRS were subsequently used to characterize different aspects of mitochondrial function. RESULTS: Common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk in independent cohorts (Luxembourg Parkinson's Study odds ratio, OR = 1.31[1.14-1.50], p-value = 5.4e-04; COURAGE-PD OR = 1.23[1.18-1.27], p-value = 1.5e-29). Functional analyses in fibroblasts and induced pluripotent stem cells-derived neuronal progenitors revealed significant differences in mitochondrial respiration between iPD patients with high or low OXPHOS-PRS (p-values < 0.05). Clinically, iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients (false discovery rate [FDR]-adj p-value = 0.015), similar to prototypic monogenic forms of PD. Finally, iPD patients with high OXPHOS-PRS responded more effectively to treatment with mitochondrially active ursodeoxycholic acid. INTERPRETATION: OXPHOS-PRS may provide a precision medicine tool to stratify iPD patients into a pathogenic subgroup genetically defined by specific mitochondrial impairment, making these individuals eligible for future intelligent clinical trial designs. ANN NEUROL 2024;96:133-149.


Subject(s)
Mitochondria , Multifactorial Inheritance , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , Multifactorial Inheritance/genetics , Mitochondria/genetics , Male , Female , Oxidative Phosphorylation , Middle Aged , Aged , Case-Control Studies , Induced Pluripotent Stem Cells , Genetic Predisposition to Disease/genetics , Genetic Risk Score
2.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088023

ABSTRACT

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Subject(s)
Epilepsy, Generalized , Epilepsy, Reflex , Myoclonus , Humans , Exome Sequencing , Interferon-Induced Helicase, IFIH1/genetics , Epilepsy, Reflex/genetics , Electroencephalography , Eyelids , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics
3.
Mov Disord ; 38(4): 604-615, 2023 04.
Article in English | MEDLINE | ID: mdl-36788297

ABSTRACT

BACKGROUND: Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE: We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS: We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS: We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS: We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Lung Neoplasms , Melanoma , Ovarian Neoplasms , Parkinson Disease , Prostatic Neoplasms , Humans , Male , Female , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Melanoma/epidemiology , Melanoma/genetics , Risk Factors
4.
Genet Med ; 24(3): 576-585, 2022 03.
Article in English | MEDLINE | ID: mdl-34906469

ABSTRACT

PURPOSE: We aimed to investigate to what extent polygenic risk scores (PRS), rare pathogenic germline variants (PVs), and family history jointly influence breast cancer and prostate cancer risk. METHODS: A total of 200,643 individuals from the UK Biobank were categorized as follows: (1) heterozygotes or nonheterozygotes for PVs in moderate to high-risk cancer genes, (2) PRS strata, and (3) with or without a family history of cancer. Multivariable logistic regression and Cox proportional hazards models were used to compute the odds ratio across groups and the cumulative incidence through life. RESULTS: Cumulative incidence by age 70 years among the nonheterozygotes across PRS strata ranged from 9% to 32% and from 9% to 35% for breast cancer and prostate cancer, respectively. Among the PV heterozygotes it ranged from 20% to 48% in moderate-risk genes and from 51% to 74% in high-risk genes for breast cancer, and it ranged from 30% to 59% in prostate cancer risk genes. Family history was always associated with an increased cancer odds ratio. CONCLUSION: PRS alone provides a meaningful risk gradient leading to a cancer risk stratification comparable to PVs in moderate risk genes, whereas acts as a risk modifier when considering high-risk genes. Including family history along with PV and PRS further improves cancer risk stratification.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ Cells , Humans , Male , Multifactorial Inheritance/genetics , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Risk Factors
5.
Mov Disord ; 37(9): 1929-1937, 2022 09.
Article in English | MEDLINE | ID: mdl-35810454

ABSTRACT

BACKGROUND: Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. OBJECTIVE: To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. METHODS: We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. RESULTS: At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95% confidence interval, 0.59-0.93, PInteraction  = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. CONCLUSIONS: Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Smoking/genetics
6.
Mov Disord ; 37(4): 857-864, 2022 04.
Article in English | MEDLINE | ID: mdl-34997937

ABSTRACT

BACKGROUND: Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. OBJECTIVE: The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). METHODS: We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). RESULTS: Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95% confidence interval = 1.12-2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37-4.56], P = 0.003; P-difference with women = 0.029). CONCLUSIONS: Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dairy Products/adverse effects , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
7.
Epilepsia ; 63(3): 723-735, 2022 03.
Article in English | MEDLINE | ID: mdl-35032048

ABSTRACT

OBJECTIVE: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. METHODS: We performed a case-control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding γ-aminobutyric acid type A [GABAA ] receptors, 113 genes representing the GABAergic pathway). RESULTS: GABRG2 was associated with GGE (p = 1.8 × 10-5 ), approaching study-wide significance in familial GGE (p = 3.0 × 10-6 ), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9-7.8, false discovery rate [FDR]-adjusted p = .0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3-6.7, FDR-adjusted p = .022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3-2.5, FDR-adjusted p = .0024) but not with sporadic GGE (OR = 1.3, 95% CI = .9-1.9, FDR-adjusted p = .19). SIGNIFICANCE: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE.


Subject(s)
Epilepsy, Generalized , Genetic Predisposition to Disease , Case-Control Studies , Epilepsy, Generalized/genetics , Genetic Predisposition to Disease/genetics , Humans , Receptors, GABA-A/genetics , Exome Sequencing , gamma-Aminobutyric Acid
8.
Epilepsia ; 63(6): 1563-1570, 2022 06.
Article in English | MEDLINE | ID: mdl-35298028

ABSTRACT

OBJECTIVE: Levetiracetam (LEV) is an effective antiseizure medicine, but 10%-20% of people treated with LEV report psychiatric side-effects, and up to 1% may have psychotic episodes. Pharmacogenomic predictors of these adverse drug reactions (ADRs) have yet to be identified. We sought to determine the contribution of both common and rare genetic variation to psychiatric and behavioral ADRs associated with LEV. METHODS: This case-control study compared cases of LEV-associated behavioral disorder (n = 149) or psychotic reaction (n = 37) to LEV-exposed people with no history of psychiatric ADRs (n = 920). All samples were of European ancestry. We performed genome-wide association study (GWAS) analysis comparing those with LEV ADRs to controls. We estimated the polygenic risk scores (PRS) for schizophrenia and compared cases with LEV-associated psychotic reaction to controls. Rare variant burden analysis was performed using exome sequence data of cases with psychotic reactions (n = 18) and controls (n = 122). RESULTS: Univariate GWAS found no significant associations with either LEV-associated behavioural disorder or LEV-psychotic reaction. PRS analysis showed that cases of LEV-associated psychotic reaction had an increased PRS for schizophrenia relative to contr ols (p = .0097, estimate = .4886). The rare-variant analysis found no evidence of an increased burden of rare genetic variants in people who had experienced LEV-associated psychotic reaction relative to controls. SIGNIFICANCE: The polygenic burden for schizophrenia is a risk factor for LEV-associated psychotic reaction. To assess the clinical utility of PRS as a predictor, it should be tested in an independent and ideally prospective cohort. Larger sample sizes are required for the identification of significant univariate common genetic signals or rare genetic signals associated with psychiatric LEV ADRs.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Genome-Wide Association Study , Anticonvulsants/adverse effects , Case-Control Studies , Genetic Predisposition to Disease/genetics , Humans , Levetiracetam/adverse effects , Pharmacogenetics , Prospective Studies
9.
Mov Disord ; 36(7): 1689-1695, 2021 07.
Article in English | MEDLINE | ID: mdl-33760272

ABSTRACT

BACKGROUND: A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. OBJECTIVES: The objective of this study were to determine whether recently reported novel SV2C and WBSCR17 loci contribute to the risk of developing PD in European and East Asian ancestry populations. METHODS: We report an association analysis of recently reported variants with PD in the COURAGE-PD cohort (9673 PD patients; 8465 controls) comprising individuals of European and East Asian ancestries. In addition, publicly available summary data (41,386 PD patients; 476,428 controls) were pooled. RESULTS: Our findings confirmed the role of the SV2C variant in PD pathogenesis (rs246814, COURAGE-PD PEuropean  = 6.64 × 10-4 , pooled PD P = 1.15 × 10-11 ). The WBSCR17 rs9638616 was observed as a significant risk marker in the East Asian pooled population only (P = 1.16 × 10-8 ). CONCLUSIONS: Our comprehensive study provides an up-to-date summary of recently detected novel loci in different PD populations and confirmed the role of SV2C locus as a novel risk factor for PD irrespective of the population or ethnic group analyzed. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Asian People/genetics , Cohort Studies , Ethnicity , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Parkinson Disease/genetics , Risk Factors
10.
Mol Psychiatry ; 25(3): 629-639, 2020 03.
Article in English | MEDLINE | ID: mdl-29988083

ABSTRACT

Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD.


Subject(s)
ADAM17 Protein/genetics , Alzheimer Disease/genetics , ADAM17 Protein/metabolism , Aged , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Germany , Humans , Loss of Function Mutation/genetics , Male , Middle Aged , Mutation , Exome Sequencing
11.
J Med Genet ; 57(9): 617-623, 2020 09.
Article in English | MEDLINE | ID: mdl-32054687

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder with complex genetic architecture. Besides rare mutations in high-risk genes related to monogenic familial forms of PD, multiple variants associated with sporadic PD were discovered via association studies. METHODS: We studied the whole-exome sequencing data of 340 PD cases and 146 ethnically matched controls from the Parkinson's Progression Markers Initiative (PPMI) and performed burden analysis for different rare variant classes. Disease prediction models were built based on clinical, non-clinical and genetic features, including both common and rare variants, and two machine learning methods. RESULTS: We observed a significant exome-wide burden of singleton loss-of-function variants (corrected p=0.037). Overall, no exome-wide burden of rare amino acid changing variants was detected. Finally, we built a disease prediction model combining singleton loss-of-function variants, a polygenic risk score based on common variants, and family history of PD as features and reached an area under the curve of 0.703 (95% CI 0.698 to 0.708). By incorporating a rare variant feature, our model increased the performance of the state-of-the-art classification model for the PPMI dataset, which reached an area under the curve of 0.639 based on common variants alone. CONCLUSION: The main finding of this study is to highlight the contribution of singleton loss-of-function variants to the complex genetics of PD and that disease risk prediction models combining singleton and common variants can improve models built solely on common variants.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Loss of Function Mutation/genetics , Parkinson Disease/genetics , Disease Progression , Exome/genetics , Female , Genotype , Humans , Male , Parkinson Disease/pathology , Risk Factors , Exome Sequencing
12.
Brain ; 140(9): 2444-2459, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050400

ABSTRACT

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the Parkinson's disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson's disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson's disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson's disease and provide new prospects for targeted therapies.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Metformin/therapeutic use , Mitochondria/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Case-Control Studies , Cells, Cultured , Fibroblasts/metabolism , HSP90 Heat-Shock Proteins/biosynthesis , High-Temperature Requirement A Serine Peptidase 2 , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation , NAD/metabolism , Organelle Biogenesis , Oxygen Consumption , Parkinson Disease/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Serine Endopeptidases/metabolism
14.
medRxiv ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39228715

ABSTRACT

Objective: Our study investigates the impact of copy number variations (CNVs) on Parkinson's disease (PD) pathogenesis using genome-wide data, aiming to uncover novel genetic mechanisms and improve the understanding of the role of CNVs in sporadic PD. Methods: We applied a sliding window approach to perform CNV-GWAS and conducted genome-wide burden analyses on CNV data from 11,035 PD patients (including 2,731 early-onset PD (EOPD)) and 8,901 controls from the COURAGE-PD consortium. Results: We identified 14 genome-wide significant CNV loci associated with PD, including one deletion and 13 duplications. Among these, duplications in 7q22.1, 11q12.3 and 7q33 displayed the highest effect. Two significant duplications overlapped with PD-related genes SNCA and VPS13C, but none overlapped with recent significant SNP-based GWAS findings. Five duplications included genes associated with neurological disease, and four overlapping genes were dosage-sensitive and intolerant to loss-of-function variants. Enriched pathways included neurodegeneration, steroid hormone biosynthesis, and lipid metabolism. In early-onset cases, four loci were significantly associated with EOPD, including three known duplications and one novel deletion in PRKN. CNV burden analysis showed a higher prevalence of CNVs in PD-related genes in patients compared to controls (OR=1.56 [1.18-2.09], p=0.0013), with PRKN showing the highest burden (OR=1.47 [1.10-1.98], p=0.026). Patients with CNVs in PRKN had an earlier disease onset. Burden analysis with controls and EOPD patients showed similar results. Interpretation: This is the largest CNV-based GWAS in PD identifying novel CNV regions and confirming the significant CNV burden in EOPD, primarily driven by the PRKN gene, warranting further investigation.

15.
Neurology ; 103(3): e209620, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38986057

ABSTRACT

BACKGROUND AND OBJECTIVES: The role of body mass index (BMI) in Parkinson disease (PD) is unclear. Based on the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in PD (Courage-PD) consortium, we used 2-sample Mendelian randomization (MR) to replicate a previously reported inverse association of genetically predicted BMI with PD and investigated whether findings were robust in analyses addressing the potential for survival and incidence-prevalence biases. We also examined whether the BMI-PD relation is bidirectional by performing a reverse MR. METHODS: We used summary statistics from a genome-wide association study (GWAS) to extract the association of 501 single-nucleotide polymorphisms (SNPs) with BMI and from the Courage-PD and international Parkinson Disease Genomics Consortium (iPDGC) to estimate their association with PD. Analyses are based on participants of European ancestry. We used the inverse-weighted method to compute odds ratios (ORIVW per 4.8 kg/m2 [95% CI]) of PD and additional pleiotropy robust methods. We performed analyses stratified by age, disease duration, and sex. For reverse MR, we used SNPs associated with PD from 2 iPDGC GWAS to assess the effect of genetic liability toward PD on BMI. RESULTS: Summary statistics for BMI are based on 806,834 participants (54% women). Summary statistics for PD are based on 8,919 (40% women) cases and 7,600 (55% women) controls from Courage-PD, and 19,438 (38% women) cases and 24,388 (51% women) controls from iPDGC. In Courage-PD, we found an inverse association between genetically predicted BMI and PD (ORIVW 0.82 [0.70-0.97], p = 0.012) without evidence for pleiotropy. This association tended to be stronger in younger participants (≤67 years, ORIVW 0.71 [0.55-0.92]) and cases with shorter disease duration (≤7 years, ORIVW 0.75 [0.62-0.91]). In pooled Courage-PD + iPDGC analyses, the association was stronger in women (ORIVW 0.85 [0.74-0.99], p = 0.032) than men (ORIVW 0.92 [0.80-1.04], p = 0.18), but the interaction was not statistically significant (p-interaction = 0.48). In reverse MR, there was evidence for pleiotropy, but pleiotropy robust methods showed a significant inverse association. DISCUSSION: Using an independent data set (Courage-PD), we replicate an inverse association of genetically predicted BMI with PD, not explained by survival or incidence-prevalence biases. Moreover, reverse MR analyses support an inverse association between genetic liability toward PD and BMI, in favor of a bidirectional relation.


Subject(s)
Body Mass Index , Genome-Wide Association Study , Mendelian Randomization Analysis , Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Polymorphism, Single Nucleotide/genetics , Female , Male , Middle Aged , Aged , Risk Factors
16.
BMC Med Genomics ; 16(1): 164, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438803

ABSTRACT

BACKGROUND & AIMS: We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) in the same population. METHODS: To calculate the PRS, we used a previously published model derived from the EUR population and applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual's genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family history (FH) in the SAS population. RESULTS: The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71-2.23, P < 0.01). At the same time, the risk of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53-0.67, P < 0.01). Results in the same direction were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51-0.56, P < 0.01) and the high-PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of these diseases, implying a greater genetic predisposition. CONCLUSION: Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is likely to improve further.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Obesity, Morbid , Humans , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Risk Factors , United Kingdom , Asian People , Multifactorial Inheritance
17.
Front Aging Neurosci ; 15: 1282174, 2023.
Article in English | MEDLINE | ID: mdl-38173558

ABSTRACT

Objectives: To explore the genetic architecture of PD in the Luxembourg Parkinson's Study including cohorts of healthy people and patients with Parkinson's disease (PD) and atypical parkinsonism (AP). Methods: 809 healthy controls, 680 PD and 103 AP were genotyped using the Neurochip array. We screened and validated rare single nucleotide variants (SNVs) and copy number variants (CNVs) within seven PD-causing genes (LRRK2, SNCA, VPS35, PRKN, PARK7, PINK1 and ATP13A2). Polygenic risk scores (PRSs) were generated using the latest genome-wide association study for PD. We then estimated the role of common variants in PD risk by applying gene-set-specific PRSs. Results: We identified 60 rare SNVs in seven PD-causing genes, nine of which were pathogenic in LRRK2, PINK1 and PRKN. Eleven rare CNVs were detected in PRKN including seven duplications and four deletions. The majority of PRKN SNVs and CNVs carriers were heterozygous and not differentially distributed between cases and controls. The PRSs were significantly associated with PD and identified specific molecular pathways related to protein metabolism and signal transduction as drivers of PD risk. Conclusion: We performed a comprehensive genetic characterization of the deep-phenotyped individuals of the Luxembourgish Parkinson's Study. Heterozygous SNVs and CNVs in PRKN were not associated with higher PD risk. In particular, we reported novel digenic variants in PD related genes and rare LRRK2 SNVs in AP patients. Our findings will help future studies to unravel the genetic complexity of PD.

18.
Front Genet ; 14: 1286561, 2023.
Article in English | MEDLINE | ID: mdl-38075701

ABSTRACT

Polygenic risk score (PRS) predictions often show bias toward the population of available genome-wide association studies (GWASs), which is typically of European ancestry. This study aimed to assess the performance differences of ancestry-specific PRS and test the implementation of multi-ancestry PRS to enhance the generalizability of low-density lipoprotein (LDL) cholesterol predictions in the East Asian (EAS) population. In this study, we computed ancestry-specific and multi-ancestry PRSs for LDL using data obtained from the Global Lipid Genetics Consortium, while accounting for population-specific linkage disequilibrium patterns using the PRS-CSx method in the United Kingdom Biobank dataset (UKB, n = 423,596) and Taiwan Biobank dataset (TWB, n = 68,978). Population-specific PRSs were able to predict LDL levels better within the target population, whereas multi-ancestry PRSs were more generalizable. In the TWB dataset, covariate-adjusted R 2 values were 9.3% for ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-specific PRS. Similar trends (8.6%, 7.8%, and 6.2%) were observed in the smaller EAS population of the UKB (n = 1,480). Consistent with R 2 values, PRS stratification in EAS regions (TWB) effectively captured a heterogenous variability in LDL blood cholesterol levels across PRS strata. The mean difference in LDL levels between the lowest and highest EAS-specific PRS (EAS_PRS) deciles was 0.82, compared to 0.59 for European-specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS. Notably, the mean LDL values in the top decile of multi-ancestry PRS were comparable to those of EAS_PRS (3.543 vs. 3.541, p = 0.86). Our analysis of the PRS prediction model for LDL cholesterol further supports the issue of PRS generalizability across populations. Our targeted analysis of the EAS population revealed that integrating non-European genotyping data with a powerful European-based GWAS can enhance the generalizability of LDL PRS.

19.
NPJ Parkinsons Dis ; 9(1): 156, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996455

ABSTRACT

Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.

20.
BMC Med Genomics ; 16(1): 42, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36872334

ABSTRACT

BACKGROUND AND AIMS: Summarised in polygenic risk scores (PRS), the effect of common, low penetrant genetic variants associated with colorectal cancer (CRC), can be used for risk stratification. METHODS: To assess the combined impact of the PRS and other main factors on CRC risk, 163,516 individuals from the UK Biobank were stratified as follows: 1. carriers status for germline pathogenic variants (PV) in CRC susceptibility genes (APC, MLH1, MSH2, MSH6, PMS2), 2. low (< 20%), intermediate (20-80%), or high PRS (> 80%), and 3. family history (FH) of CRC. Multivariable logistic regression and Cox proportional hazards models were applied to compare odds ratios and to compute the lifetime incidence, respectively. RESULTS: Depending on the PRS, the CRC lifetime incidence for non-carriers ranges between 6 and 22%, compared to 40% and 74% for carriers. A suspicious FH is associated with a further increase of the cumulative incidence reaching 26% for non-carriers and 98% for carriers. In non-carriers without FH, but high PRS, the CRC risk is doubled, whereas a low PRS even in the context of a FH results in a decreased risk. The full model including PRS, carrier status, and FH improved the area under the curve in risk prediction (0.704). CONCLUSION: The findings demonstrate that CRC risks are strongly influenced by the PRS for both a sporadic and monogenic background. FH, PV, and common variants complementary contribute to CRC risk. The implementation of PRS in routine care will likely improve personalized risk stratification, which will in turn guide tailored preventive surveillance strategies in high, intermediate, and low risk groups.


Subject(s)
Colorectal Neoplasms , Germ-Line Mutation , Humans , Incidence , Risk Factors , Germ Cells
SELECTION OF CITATIONS
SEARCH DETAIL