Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 21(8): e3002239, 2023 08.
Article in English | MEDLINE | ID: mdl-37651504

ABSTRACT

Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.


Subject(s)
Auditory Cortex , Humans , Auditory Perception , Brain , Electrocorticography , Electrophysiology
2.
Mol Psychiatry ; 29(5): 1228-1240, 2024 May.
Article in English | MEDLINE | ID: mdl-38317012

ABSTRACT

Transcranial magnetic stimulation (TMS) is increasingly used as a noninvasive technique for neuromodulation in research and clinical applications, yet its mechanisms are not well understood. Here, we present the neurophysiological effects of TMS using intracranial electrocorticography (iEEG) in neurosurgical patients. We first evaluated safety in a gel-based phantom. We then performed TMS-iEEG in 22 neurosurgical participants with no adverse events. We next evaluated intracranial responses to single pulses of TMS to the dorsolateral prefrontal cortex (dlPFC) (N = 10, 1414 electrodes). We demonstrate that TMS is capable of inducing evoked potentials both locally within the dlPFC and in downstream regions functionally connected to the dlPFC, including the anterior cingulate and insular cortex. These downstream effects were not observed when stimulating other distant brain regions. Intracranial dlPFC electrical stimulation had similar timing and downstream effects as TMS. These findings support the safety and promise of TMS-iEEG in humans to examine local and network-level effects of TMS with higher spatiotemporal resolution than currently available methods.


Subject(s)
Electrocorticography , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Electrocorticography/methods , Male , Female , Adult , Middle Aged , Brain/physiology , Brain/physiopathology , Dorsolateral Prefrontal Cortex/physiology , Brain Mapping/methods , Evoked Potentials/physiology , Young Adult , Electric Stimulation/methods
3.
Ann Neurol ; 94(3): 421-433, 2023 09.
Article in English | MEDLINE | ID: mdl-37183996

ABSTRACT

OBJECTIVE: Time orientation is a fundamental cognitive process in which one's personal sense of time is matched with a universal reference. Time orientation is commonly assessed through mental status examination, yet its neural correlates remain unclear. Large lesions have been associated with deficits in time orientation, but the regional anatomy implicated in time disorientation is not well established. The current study investigates the anatomy of time disorientation and its network correlates in patients with focal brain lesions. METHODS: Time orientation was assessed 3 months or more after lesion onset using the Benton Temporal Orientation Test (BTOT) in 550 patients with acquired, focal brain lesions, 39 of whom were impaired. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with time disorientation. Performance on a variety of neuropsychological tests was compared between the time oriented and time disoriented group. RESULTS: Lesion-symptom mapping showed that lesions of the precuneus, medial temporal lobes (MTL), and occipito-temporal cortex were associated with time disorientation (r = 0.264, p < 0.001). Lesion network mapping using normative connectome data demonstrated that these regional findings occurred along a network that includes white and gray matter connecting the precuneus and MTL. There was a strong behavioral and anatomical association of time disorientation with memory impairment, such that the 2 processes could not be fully disentangled. INTERPRETATION: We interpret these findings as novel evidence for a network involving the precuneus and the medial temporal lobe in supporting time orientation. ANN NEUROL 2023;94:421-433.


Subject(s)
Magnetic Resonance Imaging , Temporal Lobe , Humans , Parietal Lobe , Cerebral Cortex , Confusion , Neuropsychological Tests , Brain Mapping
4.
Brain ; 146(4): 1672-1685, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36181425

ABSTRACT

Understanding neural circuits that support mood is a central goal of affective neuroscience, and improved understanding of the anatomy could inform more targeted interventions in mood disorders. Lesion studies provide a method of inferring the anatomical sites causally related to specific functions, including mood. Here, we performed a large-scale study evaluating the location of acquired, focal brain lesions in relation to symptoms of depression. Five hundred and twenty-six individuals participated in the study across two sites (356 male, average age 52.4 ± 14.5 years). Each subject had a focal brain lesion identified on structural imaging and an assessment of depression using the Beck Depression Inventory-II, both obtained in the chronic period post-lesion (>3 months). Multivariate lesion-symptom mapping was performed to identify lesion sites associated with higher or lower depression symptom burden, which we refer to as 'risk' versus 'resilience' regions. The brain networks and white matter tracts associated with peak regional findings were identified using functional and structural lesion network mapping, respectively. Lesion-symptom mapping identified brain regions significantly associated with both higher and lower depression severity (r = 0.11; P = 0.01). Peak 'risk' regions include the bilateral anterior insula, bilateral dorsolateral prefrontal cortex and left dorsomedial prefrontal cortex. Functional lesion network mapping demonstrated that these 'risk' regions localized to nodes of the salience network. Peak 'resilience' regions include the right orbitofrontal cortex, right medial prefrontal cortex and right inferolateral temporal cortex, nodes of the default mode network. Structural lesion network mapping implicated dorsal prefrontal white matter tracts as 'risk' tracts and ventral prefrontal white matter tracts as 'resilience' tracts, although the structural lesion network mapping findings did not survive correction for multiple comparisons. Taken together, these results demonstrate that lesions to specific nodes of the salience network and default mode network are associated with greater risk versus resiliency for depression symptoms in the setting of focal brain lesions.


Subject(s)
Brain Mapping , Depression , Humans , Male , Adult , Middle Aged , Aged , Depression/diagnostic imaging , Depression/pathology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/pathology , Prefrontal Cortex
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941692

ABSTRACT

Hubs are highly connected brain regions important for coordinating processing in brain networks. It is unclear, however, which measures of network "hubness" are most useful in identifying brain regions critical to human cognition. We tested how closely two measures of hubness-edge density and participation coefficient, derived from white and gray matter, respectively-were associated with general cognitive impairment after brain damage in two large cohorts of patients with focal brain lesions (N = 402 and 102, respectively) using cognitive tests spanning multiple cognitive domains. Lesions disrupting white matter regions with high edge density were associated with cognitive impairment, whereas lesions damaging gray matter regions with high participation coefficient had a weaker, less consistent association with cognitive outcomes. Similar results were observed with six other gray matter hubness measures. This suggests that damage to densely connected white matter regions is more cognitively impairing than similar damage to gray matter hubs, helping to explain interindividual differences in cognitive outcomes after brain damage.


Subject(s)
Brain/pathology , Brain/physiopathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Adult , Brain/diagnostic imaging , Brain Injuries/pathology , Brain Injuries/physiopathology , Brain Mapping , Cerebral Cortex/pathology , Cognition , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Cognitive Dysfunction/diagnostic imaging , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/physiopathology , Neural Pathways/physiopathology , Neuropsychological Tests , White Matter/pathology , Young Adult
6.
Neuroimage ; 277: 120211, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37385393

ABSTRACT

Multivariate autoregressive (MVAR) model estimation enables assessment of causal interactions in brain networks. However, accurately estimating MVAR models for high-dimensional electrophysiological recordings is challenging due to the extensive data requirements. Hence, the applicability of MVAR models for study of brain behavior over hundreds of recording sites has been very limited. Prior work has focused on different strategies for selecting a subset of important MVAR coefficients in the model to reduce the data requirements of conventional least-squares estimation algorithms. Here we propose incorporating prior information, such as resting state functional connectivity derived from functional magnetic resonance imaging, into MVAR model estimation using a weighted group least absolute shrinkage and selection operator (LASSO) regularization strategy. The proposed approach is shown to reduce data requirements by a factor of two relative to the recently proposed group LASSO method of Endemann et al (Neuroimage 254:119057, 2022) while resulting in models that are both more parsimonious and more accurate. The effectiveness of the method is demonstrated using simulation studies of physiologically realistic MVAR models derived from intracranial electroencephalography (iEEG) data. The robustness of the approach to deviations between the conditions under which the prior information and iEEG data is obtained is illustrated using models from data collected in different sleep stages. This approach allows accurate effective connectivity analyses over short time scales, facilitating investigations of causal interactions in the brain underlying perception and cognition during rapid transitions in behavioral state.


Subject(s)
Electrocorticography , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Electrocorticography/methods , Brain/physiology , Brain Mapping/methods , Computer Simulation , Algorithms , Electroencephalography/methods
7.
Cerebellum ; 22(3): 370-378, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35568792

ABSTRACT

Posterior fossa arachnoid cysts (PFACs) are rare congenital abnormalities observed in 0.3 to 1.7% of the population and are traditionally thought to be benign. While conducting a neuroimaging study investigating cerebellar structure in bipolar disorder, we observed a higher incidence of PFACs in bipolar patients (5 of 75; 6.6%) compared to the neuronormative control group (1 of 54; 1.8%). In this report, we detail the cases of the five patients with bipolar disorder who presented with PFACs. Additionally, we compare neuropsychiatric measures and cerebellar volumes of these patients to neuronormative controls and bipolar controls (those with bipolar disorder without neuroanatomical abnormalities). Our findings suggest that patients with bipolar disorder who also present with PFACs may have a milder symptom constellation relative to patients with bipolar disorder and no neuroanatomical abnormalities. Furthermore, our observations align with prior literature suggesting an association between PFACs and psychiatric symptoms that warrants further study. While acknowledging sample size limitations, our primary aim in the present work is to highlight a connection between PFACs and BD-associated symptoms and encourage further study of cerebellar abnormalities in psychiatry.


Subject(s)
Arachnoid Cysts , Bipolar Disorder , Humans , Retrospective Studies , Magnetic Resonance Imaging/methods , Cerebellum/abnormalities , Cranial Fossa, Posterior
8.
J Int Neuropsychol Soc ; 29(9): 878-884, 2023 11.
Article in English | MEDLINE | ID: mdl-36781414

ABSTRACT

OBJECTIVE: Stroke can cause cognitive impairment, which can lead to challenges returning to day-to-day activities. Knowing what factors are associated with cognitive impairment post-stroke can be useful for predicting outcomes and guiding rehabilitation. One such factor is gender: previous studies are inconclusive as to whether gender influences cognitive outcomes post-stroke. Accounting for key variables, we examined whether there are gender differences in cognitive outcomes after stroke. METHOD: We analyzed data from neuropsychological assessments of 237 individuals tested in the chronic epoch (≥ 3 months) following ischemic stroke. Using ANCOVA and linear mixed modeling, we examined gender as a predictor of cognition as measured by general cognitive ability (g), Full-Scale IQ, and 18 cognitive tests, controlling for age at stroke onset, education, premorbid intelligence, and lesion volume. RESULTS: There were no significant gender differences in overall cognitive outcomes as measured by g (p = .887) or Full-Scale IQ (p = .801). There were some significant gender differences on specific cognitive tests, with women outperforming men on scores from the Rey Auditory Verbal Learning Test (ps < .01) and men outperforming women on the Wechsler Adult Intelligence Scale Arithmetic and Information subtests (ps < .01). CONCLUSIONS: Our findings indicate that men and women have similar overall cognitive outcomes after stroke, when demographic and lesion factors are accounted for. Although men and women differed in their performance on some individual cognitive tests, neither gender performed systematically better or worse. However, for learning, working memory, and verbal knowledge/comprehension, gender may be an important predictor of outcome post-stroke.


Subject(s)
Cognition Disorders , Stroke , Male , Adult , Humans , Female , Cognition Disorders/etiology , Cognition Disorders/complications , Stroke/complications , Neuropsychological Tests , Intelligence Tests , Cognition
9.
Brain ; 145(4): 1338-1353, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35025994

ABSTRACT

Clinicians and scientists alike have long sought to predict the course and severity of chronic post-stroke cognitive and motor outcomes, as the ability to do so would inform treatment and rehabilitation strategies. However, it remains difficult to make accurate predictions about chronic post-stroke outcomes due, in large part, to high inter-individual variability in recovery and a reliance on clinical heuristics rather than empirical methods. The neuroanatomical location of a stroke is a key variable associated with long-term outcomes, and because lesion location can be derived from routinely collected clinical neuroimaging data there is an opportunity to use this information to make empirically based predictions about post-stroke deficits. For example, lesion location can be compared to statistically weighted multivariate lesion-behaviour maps of neuroanatomical regions that, when damaged, are associated with specific deficits based on aggregated outcome data from large cohorts. Here, our goal was to evaluate whether we can leverage lesion-behaviour maps based on data from two large cohorts of individuals with focal brain lesions to make predictions of 12-month cognitive and motor outcomes in an independent sample of stroke patients. Further, we evaluated whether we could augment these predictions by estimating the structural and functional networks disrupted in association with each lesion-behaviour map through the use of structural and functional lesion network mapping, which use normative structural and functional connectivity data from neurologically healthy individuals to elucidate lesion-associated networks. We derived these brain network maps using the anatomical regions with the strongest association with impairment for each cognitive and motor outcome based on lesion-behaviour map results. These peak regional findings became the 'seeds' to generate networks, an approach that offers potentially greater precision compared to previously used single-lesion approaches. Next, in an independent sample, we quantified the overlap of each lesion location with the lesion-behaviour maps and structural and functional lesion network mapping and evaluated how much variance each could explain in 12-month behavioural outcomes using a latent growth curve statistical model. We found that each lesion-deficit mapping modality was able to predict a statistically significant amount of variance in cognitive and motor outcomes. Both structural and functional lesion network maps were able to predict variance in 12-month outcomes beyond lesion-behaviour mapping. Functional lesion network mapping performed best for the prediction of language deficits, and structural lesion network mapping performed best for the prediction of motor deficits. Altogether, these results support the notion that lesion location and lesion network mapping can be combined to improve the prediction of post-stroke deficits at 12-months.


Subject(s)
Brain , Stroke , Brain/pathology , Brain Mapping/methods , Humans , Language , Magnetic Resonance Imaging/methods , Neuroimaging , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology
10.
J Neurosci ; 40(46): 8924-8937, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33046547

ABSTRACT

General cognitive ability, or general intelligence (g), is central to cognitive science, yet the processes that constitute it remain unknown, in good part because most prior work has relied on correlational methods. Large-scale behavioral and neuroanatomical data from neurologic patients with focal brain lesions can be leveraged to advance our understanding of the key mechanisms of g, as this approach allows inference on the independence of cognitive processes along with elucidation of their respective neuroanatomical substrates. We analyzed behavioral and neuroanatomical data from 402 humans (212 males; 190 females) with chronic, focal brain lesions. Structural equation models (SEMs) demonstrated a psychometric isomorphism between g and working memory in our sample (which we refer to as g/Gwm), but not between g and other cognitive abilities. Multivariate lesion-behavior mapping analyses indicated that g and working memory localize most critically to a site of converging white matter tracts deep to the left temporo-parietal junction. Tractography analyses demonstrated that the regions in the lesion-behavior map of g/Gwm were primarily associated with the arcuate fasciculus. The anatomic findings were validated in an independent cohort of acute stroke patients (n = 101) using model-based predictions of cognitive deficits generated from the Iowa cohort lesion-behavior maps. The neuroanatomical localization of g/Gwm provided the strongest prediction of observed g in the new cohort (r = 0.42, p < 0.001), supporting the anatomic specificity of our findings. These results provide converging behavioral and anatomic evidence that working memory is a key mechanism contributing to domain-general cognition.SIGNIFICANCE STATEMENT General cognitive ability (g) is thought to play an important role in individual differences in adaptive behavior, yet its core processes remain unknown, in large part because of difficulties in making causal inferences from correlated data. Using data from patients with focal brain damage, we demonstrate that there is a strong psychometric correspondence between g and working memory - the ability to maintain and control mental information, and that the critical neuroanatomical substrates of g and working memory include the arcuate fasciculus. This work provides converging behavioral and neuroanatomical evidence that working memory is a key mechanism contributing to domain-general cognition.


Subject(s)
Cognition/physiology , Psychometrics , Psychomotor Performance/physiology , Adult , Aged , Animals , Brain Mapping , Cognition Disorders/pathology , Cohort Studies , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Evoked Potentials , Female , Humans , Intelligence/physiology , Male , Memory, Short-Term/physiology , Middle Aged , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , White Matter/diagnostic imaging , White Matter/physiology
11.
Neuroimage ; 245: 118642, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34637901

ABSTRACT

Motor recovery following ischemic stroke is contingent on the ability of surviving brain networks to compensate for damaged tissue. In rodent models, sensory and motor cortical representations have been shown to remap onto intact tissue around the lesion site, but remapping to more distal sites (e.g. in the contralesional hemisphere) has also been observed. Resting state functional connectivity (FC) analysis has been employed to study compensatory network adaptations in humans, but mechanisms and time course of motor recovery are not well understood. Here, we examine longitudinal FC in 23 first-episode ischemic pontine stroke patients and utilize a graph matching approach to identify patterns of functional connectivity reorganization during recovery. We quantified functional reorganization between several intervals ranging from 1 week to 6 months following stroke, and demonstrated that the areas that undergo functional reorganization most frequently are in cerebellar/subcortical networks. Brain regions with more structural and functional connectome disruption due to the stroke also had more remapping over time. Finally, we show that functional reorganization is correlated with the extent of motor recovery in the early to late subacute phases, and furthermore, individuals with greater baseline motor impairment demonstrate more extensive early subacute functional reorganization (from one to two weeks post-stroke) and this reorganization correlates with better motor recovery at 6 months. Taken together, these results suggest that our graph matching approach can quantify recovery-relevant, whole-brain functional connectivity network reorganization after stroke.


Subject(s)
Connectome/methods , Magnetic Resonance Imaging/methods , Motor Cortex/diagnostic imaging , Motor Cortex/physiopathology , Recovery of Function , Stroke/diagnostic imaging , Stroke/physiopathology , Adult , Aged , Case-Control Studies , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male , Middle Aged
12.
J Neurosci Res ; 99(1): 361-373, 2021 01.
Article in English | MEDLINE | ID: mdl-32594566

ABSTRACT

Functional neuroimaging research has consistently associated brain structures within the default mode network (DMN) and frontoparietal network (FPN) with mind-wandering. Targeted lesion research has documented impairments in mind-wandering after damage to the medial prefrontal cortex (mPFC) and hippocampal regions associated with the DMN. However, no lesion studies to date have applied lesion network mapping to identify common networks associated with deficits in mind-wandering. In lesion network mapping, resting-state functional connectivity data from healthy participants are used to infer which brain regions are functionally connected to each lesion location from a sample with brain injury. In the current study, we conducted a lesion network mapping analysis to test the hypothesis that lesions affecting the DMN and FPN would be associated with diminished mind-wandering. We assessed mind-wandering frequency on the Imaginal Processes Inventory (IPI) in participants with brain injury (n = 29) and healthy comparison participants without brain injury (n = 19). Lesion network mapping analyses showed the strongest association of reduced mind-wandering with the left inferior parietal lobule within the DMN. In addition, traditional lesion symptom mapping results revealed that reduced mind-wandering was associated with lesions of the dorsal, ventral, and anterior sectors of mPFC, parietal lobule, and inferior frontal gyrus in the DMN (p < 0.05 uncorrected). These findings provide novel lesion support for the role of the DMN in mind-wandering and contribute to a burgeoning literature on the neural correlates of spontaneous cognition.


Subject(s)
Attention/physiology , Brain Injuries/physiopathology , Brain Mapping/methods , Brain/physiology , Default Mode Network/physiology , Aged , Female , Humans , Male , Middle Aged
13.
J Neuropsychiatry Clin Neurosci ; 33(3): 201-209, 2021.
Article in English | MEDLINE | ID: mdl-33985346

ABSTRACT

Psychiatric conditions are common and often disabling. Although great strides have been made in alleviating symptoms with pharmacotherapy and psychotherapeutic approaches, many patients continue to have severe disease burden despite the best therapies available. One of the pervasive challenges to improving treatment is that present diagnostic and therapeutic strategies lag behind our modern conceptualization of the pathophysiology of these disorders. Psychiatric symptoms manifest through activity in specific neural circuits; thus, therapies capable of modulating these circuits are attractive. The investigators reviewed recent advances that facilitate treating medically refractory psychiatric disorders with intracranial neuromodulation in a way that intervenes more directly with the underlying pathophysiology. Specifically, they reviewed the prospects for using intracranial multielectrode arrays to record brain activity with high spatiotemporal resolution and identify circuit-level electrophysiological correlates of symptoms. A causal relationship of circuit electrophysiology to symptoms could then be established by modulating the circuits to disrupt the symptoms. Personalized therapeutic neuromodulation strategies can then proceed in a rational manner with stimulation protocols informed by the underlying circuit-based pathophysiology of the most bothersome symptoms. This strategy would enhance current methods in neurotherapeutics by identifying individualized anatomical targets with symptom-specific precision, circumventing many of the limitations inherent in modern psychiatric nosology and treatment.


Subject(s)
Mental Disorders , Neurotransmitter Agents , Precision Medicine , Brain/physiopathology , Humans , Mental Disorders/physiopathology , Mental Disorders/therapy , Neurophysiology
14.
J Cogn Neurosci ; 32(12): 2303-2319, 2020 12.
Article in English | MEDLINE | ID: mdl-32902335

ABSTRACT

The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.


Subject(s)
Connectome , Executive Function , Animals , Humans , Magnetic Resonance Imaging , Mediodorsal Thalamic Nucleus , Thalamus/diagnostic imaging
15.
Hum Brain Mapp ; 41(14): 3984-3992, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32573885

ABSTRACT

Rapid eye movement (REM) sleep is a paradoxical state where the individual appears asleep while the electroencephalogram pattern resembles that of wakefulness. Regional differences in brain metabolism have been observed during REM sleep compared to wakefulness, but it is not known whether the spatial distribution of metabolic differences corresponds to known functional networks in the brain. Here, we use a combination of techniques to evaluate the networks associated with sites of REM sleep activation and deactivation from previously published positron emission tomography studies. We use seed-based functional connectivity from healthy adults acquired during quiet rest to show that REM-activation regions are functionally connected in a network that includes retrosplenial cingulate cortex, parahippocampal gyrus, and extrastriate visual cortices, corresponding to components of the default mode network and visual networks. Regions deactivated during REM sleep localize to right-lateralized fronto-parietal and salience networks. A negatively correlated relationship was observed between REM-activation and deactivation networks. Together, these findings show that regional activation and deactivation patterns of REM sleep tend to occur in distinct functional connectivity networks that are present during wakefulness, providing insights regarding the differential contributions of brain regions to the distinct subjective experiences that occur during REM sleep (dreaming) relative to wakefulness.


Subject(s)
Cerebral Cortex/physiology , Connectome , Default Mode Network/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Positron-Emission Tomography , Sleep, REM/physiology , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Humans , Nerve Net/diagnostic imaging
16.
Stroke ; 50(5): 1067-1073, 2019 05.
Article in English | MEDLINE | ID: mdl-31009350

ABSTRACT

Background and Purpose- Hemispheric stroke studies associating lateropulsion (pusher syndrome) with the location of brain lesions have had mixed results from small, unmatched samples. This study was designed to determine whether lateropulsion localizes to specific brain regions across patients with stroke using a case-control design. Methods- Fifty patients with lateropulsion after stroke were matched with 50 stroke patients without lateropulsion using age, time since onset of stroke, admission motor Functional Independence Measure score, lesion side, and gender. The primary analysis included multivariate lesion symptom mapping using sparse canonical correlations to identify regions most associated with lateropulsion as assessed with the Burke Lateropulsion Scale. Secondary analyses included evaluating paired comparisons for lesion volume, degree of motor impairment, motor and cognitive Functional Independence Measure scores. Results- The lesion symptom mapping analysis of all lesions mapped onto a common hemisphere produced an overall significant model ( P<5×10-5) with a regional peak at the inferior parietal lobe at the junction of the post-central gyrus (Brodmann Area 2) and Brodmann Area 40 as the lesion location most associated with lateropulsion. Lesion volume was larger for patients with lateropulsion. Despite adequate matching, motor performance and total Functional Independence Measure scores differed at a group level between patients with and without lateropulsion. Conclusions- This analysis implicated lesion involvement of the inferior parietal lobe as a key neuroanatomical determinant of developing lateropulsion. A better understanding of the anatomic underpinnings of lateropulsion may improve rehabilitation efforts, including the potential for informing noninvasive neuromodulation approaches.


Subject(s)
Postural Balance/physiology , Recovery of Function/physiology , Stroke Rehabilitation/trends , Stroke/diagnostic imaging , Stroke/physiopathology , Aged , Aged, 80 and over , Female , Humans , Male , Retrospective Studies , Stroke/therapy
17.
Ann Neurol ; 84(6): 926-930, 2018 12.
Article in English | MEDLINE | ID: mdl-30421457

ABSTRACT

In this study, we evaluate the role of the thalamus in the neural circuitry of arousal. Level of consciousness within the first 12 hours of a thalamic stroke is assessed with lesion symptom mapping. Impaired arousal correlates with lesions in the paramedian posterior thalamus near the centromedian and parafascicular nuclei, posterior hypothalamus, and midbrain tegmentum. All patients with severely impaired arousal (coma, stupor) had lesion extension into the midbrain and/or pontine tegmentum, whereas purely thalamic lesions did not severely impair arousal. These results are consistent with growing evidence that pathways most critical for human arousal lie outside the thalamus. Ann Neurol 2018;84:926-930.


Subject(s)
Brain Stem/pathology , Coma/etiology , Stroke/complications , Stroke/pathology , Stupor/etiology , Thalamus/pathology , Arousal/physiology , Brain Mapping , Coma/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Retrospective Studies , Stroke/diagnostic imaging , Stupor/diagnostic imaging , Thalamus/diagnostic imaging , Time Factors
18.
Cerebellum ; 18(3): 489-499, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30825131

ABSTRACT

Cognitive dysfunction is a pervasive and disabling aspect of schizophrenia without adequate treatments. A recognized correlate to cognitive dysfunction in schizophrenia is attenuated frontal theta oscillations. Neuromodulation to normalize these frontal rhythms represents a potential novel therapeutic strategy. Here, we evaluate whether noninvasive neuromodulation of the cerebellum in patients with schizophrenia can enhance frontal theta oscillations, with the future goal of targeting the cerebellum as a possible therapy for cognitive dysfunction in schizophrenia. We stimulated the midline cerebellum using transcranial pulsed current stimulation (tPCS), a noninvasive transcranial direct current that can be delivered in a frequency-specific manner. A single 20-min session of theta frequency stimulation was delivered in nine patients with schizophrenia (cathode on right shoulder). Delta frequency tPCS was also delivered as a control to evaluate for frequency-specific effects. EEG signals from midfrontal electrode Cz were analyzed before and after cerebellar tPCS while patients estimated the passage of 3- and 12-s intervals. Theta oscillations were significantly larger following theta frequency cerebellar tPCS in the midfrontal region, which was not seen with delta frequency stimulation. As previously reported, patients with schizophrenia showed a baseline reduction in accuracy estimating 3- and 12-s intervals relative to control subjects, which did not significantly improve following a single-session theta or delta frequency cerebellar tPCS. These preliminary results suggest that single-session theta frequency cerebellar tPCS may modulate task-related oscillatory activity in the frontal cortex in a frequency-specific manner. These preliminary findings warrant further investigation to evaluate whether multiple sessions delivered daily may have an impact on cognitive performance and have therapeutic implications for schizophrenia.


Subject(s)
Cerebellum/physiopathology , Schizophrenia/physiopathology , Schizophrenia/therapy , Transcranial Direct Current Stimulation , Adult , Female , Frontal Lobe/physiopathology , Humans , Male , Middle Aged , Theta Rhythm/physiology
19.
J Neuropsychiatry Clin Neurosci ; 30(4): 271-278, 2018.
Article in English | MEDLINE | ID: mdl-29939105

ABSTRACT

Neurology and psychiatry share common historical origins and rely on similar tools to study brain disorders. Yet the practical integration of medical and scientific approaches across these clinical neurosciences remains elusive. Although much has been written about the need to incorporate emerging systems-level, cellular-molecular, and genetic-epigenetic advances into a science of mind for psychiatric disorders, less attention has been given to applying clinical neuroscience principles to conceptualize neurologic conditions with an integrated neurobio-psycho-social approach. In this perspective article, the authors briefly outline the historically interwoven and complicated relationship between neurology and psychiatry. Through a series of vignettes, the authors then illustrate how some traditional psychiatric conditions are being reconceptualized in part as disorders of neurodevelopment and awareness. They emphasize the intersection of neurology and psychiatry by highlighting conditions that cut across traditional diagnostic boundaries. The authors argue that the divide between neurology and psychiatry can be narrowed by moving from lesion-based toward circuit-based understandings of neuropsychiatric disorders, from unidirectional toward bidirectional models of brain-behavior relationships, from exclusive reliance on categorical diagnoses toward transdiagnostic dimensional perspectives, and from silo-based research and treatments toward interdisciplinary approaches. The time is ripe for neurologists and psychiatrists to implement an integrated clinical neuroscience approach to the assessment and management of brain disorders. The subspecialty of behavioral neurology & neuropsychiatry is poised to lead the next generation of clinicians to merge brain science with psychological and social-cultural factors. These efforts will catalyze translational research, revitalize training programs, and advance the development of impactful patient-centered treatments.


Subject(s)
Brain Diseases/physiopathology , Brain/physiopathology , Mental Disorders/physiopathology , Neurology , Psychiatry , Adolescent , Adult , Brain/physiology , Brain Diseases/psychology , Child , Humans , Mental Disorders/psychology , Neurosciences , Young Adult
20.
J Neuropsychiatry Clin Neurosci ; 30(3): 173-179, 2018.
Article in English | MEDLINE | ID: mdl-29685065

ABSTRACT

Noninvasive brain stimulation refers to a set of technologies and techniques with which to modulate the excitability of the brain via transcranial stimulation. Two major modalities of noninvasive brain stimulation are transcranial magnetic stimulation (TMS) and transcranial current stimulation. Six TMS devices now have approved uses by the U.S. Food and Drug Administration and are used in clinical practice: five for treating medication refractory depression and the sixth for presurgical mapping of motor and speech areas. Several large, multisite clinical trials are currently underway that aim to expand the number of clinical applications of noninvasive brain stimulation in a way that could affect multiple clinical specialties in the coming years, including psychiatry, neurology, pediatrics, neurosurgery, physical therapy, and physical medicine and rehabilitation. In this article, the authors review some of the anticipated challenges facing the incorporation of noninvasive brain stimulation into clinical practice. Specific topics include establishing efficacy, safety, economics, and education. In discussing these topics, the authors focus on the use of TMS in the treatment of medication refractory depression when possible, because this is the most widely accepted clinical indication for TMS to date. These challenges must be thoughtfully considered to realize the potential of noninvasive brain stimulation as an emerging specialty that aims to enhance the current ability to diagnose and treat disorders of the brain.


Subject(s)
Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Brain Diseases/diagnosis , Brain Diseases/therapy , Depressive Disorder/diagnosis , Depressive Disorder/therapy , Humans , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/economics , Transcranial Direct Current Stimulation/instrumentation , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/economics , Transcranial Magnetic Stimulation/instrumentation , Transcranial Magnetic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL