Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cytometry A ; 101(1): 15-20, 2022 01.
Article in English | MEDLINE | ID: mdl-34260151

ABSTRACT

This Optimized Multicolor Immunofluorescence Panel was designed to identify and quantify all principal leukocyte populations in human blood using a minimum number of markers. We achieved this goal using a carefully selected combination of 14 surface markers compatible with standard flow cytometric instruments and accessible to a particularly large research community. Optimized for use in whole blood, this panel allows polymorphonuclear cell identification, supports live cell recovery, and is well-suited for absolute cell counting applications in the original in vivo volume. Panel performance and the separation of populations are high, and virtually no cells remain undefined after gating. Besides the identification of neutrophils, eosinophils, basophils, T cells, natural killer cells, B cells, plasma cells, monocytes, myeloid dendritic cells and plasmacytoid dendritic cells, this panel also covers progenitor cells and may therefore be attractive for stem cell researchers. Envisioned applications of this panel include immune monitoring within clinical trials, initial discovery to inform subset-targeted panels, and clinical diagnostics. In summary, this panel offers a broadly applicable platform for immune cell identification, quantification and characterization in human samples, particularly whole blood.


Subject(s)
Leukocytes , Monocytes , Dendritic Cells , Flow Cytometry , Humans , Killer Cells, Natural
2.
Br J Cancer ; 125(3): 313-323, 2021 08.
Article in English | MEDLINE | ID: mdl-33824481

ABSTRACT

Tumour neoantigens arising from cancer-specific mutations generate a molecular fingerprint that has a definite specificity for cancer. Although this fingerprint perfectly discriminates cancer from healthy somatic and germline cells, and is therefore therapeutically exploitable using immune checkpoint blockade, gut and extra-gut microbial species can independently produce epitopes that resemble tumour neoantigens as part of their natural gene expression programmes. Such tumour molecular mimicry is likely not only to influence the quality and strength of the body's anti-cancer immune response, but could also explain why certain patients show favourable long-term responses to immune checkpoint blockade while others do not benefit at all from this treatment. This article outlines the requirement for tumour neoantigens in successful cancer immunotherapy and draws attention to the emerging role of microbiome-mediated tumour neoantigen mimicry in determining checkpoint immunotherapy outcome, with far-reaching implications for the future of cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/genetics , Epitopes/pharmacology , Neoplasms/drug therapy , Epitopes/therapeutic use , Gastrointestinal Microbiome , Humans , Immunotherapy , Molecular Mimicry , Mutation , Neoplasms/genetics , Neoplasms/immunology
3.
Int J Cancer ; 146(7): 2007-2018, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31800094

ABSTRACT

Ovarian cancer (OC) is the most lethal gynecological malignancy, with platinum-based chemotherapy remaining the mainstay for adjuvant treatment after surgery. The lack of indication for immunotherapy may at least in part result from the lack of suitable biomarkers allowing stratification of potentially responding patients. In this monocentric study of 141 cases with OC, we used real-time quantitative PCR to assess the expression of retinoic acid-inducible gene-I (RIG-I) in primary tumor and healthy ovarian control tissues. RIG-I expression was correlated to various clinicopathological characteristics as well as to a set of molecular and immunological markers. The prognostic significance of RIG-I expression was queried in univariate and multivariate analyses and validated in an independent cohort. RIG-I was overexpressed in the cancerous ovary and correlated with a higher tumor grade. The more aggressive Type-II cancers and cancers with inactivating p53 mutations exhibited higher RIG-I expression. RIG-I levels were also elevated in cancers that recurred after remission or were platinum-refractory. Survival analyses disclosed RIG-I as an independent marker of poor outcome in OC. Continuative analyses revealed the molecular and immunological correlates of RIG-I expression in the tumor microenvironment, including interferon production and a distinct immune-regulatory signature involving checkpoint molecules (PD-L1/PD-1), the RNA-editing enzyme ADAR1 and the regulatory T cell-specific transcription factor FoxP3. We conclude that high RIG-I expression associates with poor outcome in OC, which is explainable by local immunosuppression in the tumor bed. RIG-I expression may inform checkpoint blockade and/or RIG-I agonistic targeting in a subset of high-risk OC patients.


Subject(s)
Biomarkers, Tumor , DEAD Box Protein 58/genetics , Ovarian Neoplasms/etiology , Ovarian Neoplasms/mortality , Tumor Escape/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Grading , Neoplasm Staging , Ovarian Neoplasms/diagnosis , Prognosis , Proportional Hazards Models , Receptors, Immunologic , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Young Adult
4.
Respir Res ; 21(1): 165, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32605572

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an incurable disease characterized by progressive lung fibrosis ultimately resulting in respiratory failure and death. Recurrent micro-injuries to the alveolar epithelium and aberrant alveolar wound healing with impaired re-epithelialization define the initial steps of the pathogenic trajectory. Failure of timely alveolar epithelial repair triggers hyper-proliferation of mesenchymal cells accompanied by increased deposition of extracellular matrix into the lung interstitium. METHODS: We previously isolated fibrosis-specific mesenchymal stem cell (MSC)-like cells from lung tissue of patients with interstitial lung diseases. These cells produced factors bearing anti-fibrotic potential and changed their morphology from mesenchymal to epithelial upon culture in an epithelial cell (EC)-specific growth medium. Here, we set out to molecularly characterize these MSC-like cell-derived ECs using global gene expression profiling by RNA-sequencing. Moreover, we aimed at characterizing disease-specific differences by comparing the transcriptomes of ECs from IPF and non-IPF sources. RESULTS: Our results suggest that differentially expressed genes are enriched for factors related to fibrosis, hypoxia, bacterial colonization and metabolism, thus reflecting many of the hallmark characteristics of pulmonary fibrosis. IPF-ECs showed enrichment of both pro- and anti-fibrotic genes, consistent with the notion of adaptive, compensatory regulation. CONCLUSIONS: Our findings support the hypothesis of a functional impairment of IPF-ECs, which could possibly explain the poor clinical outcome of IPF that roughly compares to those of advanced-stage cancers. Our study provides a valuable resource for downstream mechanistic investigation and the quest for novel therapeutic IPF targets.


Subject(s)
Epithelial Cells/pathology , Gene Expression Profiling , Idiopathic Pulmonary Fibrosis/genetics , Transcriptome , Adult , Aged , Cells, Cultured , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases, Interstitial , Male , Mesenchymal Stem Cells , Middle Aged , RNA/biosynthesis , RNA/genetics , Signal Transduction
5.
Sensors (Basel) ; 20(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947905

ABSTRACT

Sleep apnea (SA) is a prevalent disorder diagnosed by polysomnography (PSG) based on the number of apnea-hypopnea events per hour of sleep (apnea-hypopnea index, AHI). PSG is expensive and technically complex; therefore, its use is rather limited to the initial diagnostic phase and simpler devices are required for long-term follow-up. The validity of single-parameter wearable devices for the assessment of sleep apnea severity is still debated. In this context, a wearable electrocardiogram (ECG) acquisition system (ECG belt) was developed and its suitability for the classification of sleep apnea severity was investigated using heart rate variability analysis with or without data pre-filtering. Several classification algorithms were compared and support vector machine was preferred due to its simplicity and overall performance. Whole-night ECG signals from 241 patients with a suspicion of sleep apnea were recorded using both the ECG belt and patched ECG during PSG recordings. 65% of patients had an obstructive sleep apnea and the median AHI was 21 [IQR: 7-40] h - 1 . The classification accuracy obtained from the ECG belt (accuracy: 72%, sensitivity: 70%, specificity: 74%) was comparable to the patched ECG (accuracy: 74%, sensitivity: 88%, specificity: 61%). The highest classification accuracy was obtained for the discrimination between individuals with no or mild SA vs. moderate to severe SA. In conclusion, the ECG belt provided signals comparable to patched ECG and could be used for the assessment of sleep apnea severity, especially during follow-up.


Subject(s)
Biosensing Techniques , Electrocardiography , Monitoring, Physiologic/methods , Sleep Apnea Syndromes/physiopathology , Adult , Algorithms , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Polysomnography/methods , Severity of Illness Index , Sleep Apnea Syndromes/classification , Sleep Apnea Syndromes/diagnosis , Support Vector Machine , Wearable Electronic Devices
6.
Adv Exp Med Biol ; 1139: 201-221, 2019.
Article in English | MEDLINE | ID: mdl-31134503

ABSTRACT

Ovarian carcinoma features pronounced clinical, histopathological, and molecular heterogeneity. There is good reason to believe that parts of this heterogeneity can be explained by differences in the respective cell of origin, with a self-renewing fallopian tube secretory cell being likely responsible for initiation of an overwhelming majority of high-grade serous ovarian carcinomas (i.e., type II tumors according to the recent dualistic classification), whereas there are several mutually non-exclusive possibilities for the initiation of type I tumors, including ovarian surface epithelium stem cells, endometrial cells, or even cells of extra-Müllerian origin. Interestingly, both fallopian tube self-renewing secretory cells and ovarian surface epithelium stem cells seem to be characterized by an overlapping array of stemness signaling pathways, especially Wnt/ß-catenin. Apart from this variability in the respective cell of origin, the particular clinical behavior of ovarian carcinoma strongly suggests an underlying stem cell component with a crucial impact. This becomes especially evident in high-grade serous ovarian carcinomas treated with classical chemotherapy, which entails a gradual evolution of chemoresistant disease without any apparent selection of clones carrying obvious chemoresistance-associated mutations. Several cell surface markers (e.g., CD24, CD44, CD117, CD133, and ROR1) as well as functional approaches (ALDEFLUOR™ and side population assays) have been used to identify and characterize putative ovarian carcinoma stem cells. We have recently shown that side population cells exhibit marked heterogeneity on their own, which can hamper their straightforward therapeutic targeting. An alternative strategy for stemness-depleting interventions is to target the stem cell niche, i.e., the specific microanatomical structure that secures stem cell maintenance and survival through provision of a set of stem cell-promoting and differentiation-antagonizing factors. Besides identifying direct or indirect therapeutic targets, profiling of side population cells and other ovarian carcinoma stem cell subpopulations can reveal relevant prognostic markers, as exemplified by our recent discovery of the Vav3.1 transcript variant, which filters out a fraction of prognostically unfavorable ovarian carcinoma cases.


Subject(s)
Neoplastic Stem Cells/cytology , Ovarian Neoplasms/pathology , Biomarkers, Tumor , Epithelial Cells/cytology , Fallopian Tubes/cytology , Female , Humans , Membrane Proteins
7.
Sensors (Basel) ; 19(11)2019 May 28.
Article in English | MEDLINE | ID: mdl-31141955

ABSTRACT

Even for 1-lead electrocardiography (ECG), single-use gel conductive electrodes are employed in a clinical setting. However, gel electrodes show limited applicability for long-term monitoring due to skin irritation and detachment. In the present study, we investigated the validity of a textile ECG-belt suitable for long-term measurements in clinical use. In order to assess the signal quality and validity of the ECG-belt during sleep, 242 patients (186 males and 56 females, age 52 (interquartile range 42-60) years, body mass index 29 (interquartile range 26-33) kg·m-2) with suspected sleep apnoea underwent overnight polysomnography including standard 1-lead ECG recording. The single intervals between R-peaks (RR-intervals) were calculated from the ECG-signals. We found a mean difference for average RR-intervals of -2.9 ms, a standard error of estimate of 0.39%, as well as a Pearson r of 0.91. Furthermore, we found that the validity of the ECG-belt decreases when lying on the side, which was potentially due to the fitting of the belt. In conclusion, the validity of RR-interval measurements using the ECG-belt is high and it may be further improved for future applications by optimizing wear fitting.


Subject(s)
Electrocardiography , Monitoring, Physiologic , Textiles , Adult , Artifacts , Electrodes , Female , Humans , Male , Middle Aged , Posture , Signal-To-Noise Ratio , Sleep Apnea Syndromes/diagnosis , Wavelet Analysis
8.
Sensors (Basel) ; 19(15)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370241

ABSTRACT

Sleep monitoring in an unattended home setting provides important information complementing and extending the clinical polysomnography findings. The validity of a wearable textile electrocardiography (ECG)-belt has been proven in a clinical setting. For evaluation in a home setting, ECG signals and features were acquired from 12 patients (10 males and 2 females, showing an interquartile range for age of 48-59 years and for body mass indexes (BMIs) of 28.0-35.5) over 28 nights. The signal quality was assessed by artefacts detection, signal-to-noise ratio, and Poincaré plots. To assess the validity, the data were compared to previously reported data from the clinical setting. It was found that the artefact percentage was slightly reduced for the ECG-belt from 9.7% ± 14.7% in the clinical setting, to 7.5% ± 10.8% in the home setting. The signal-to-noise ratio was improved in the home setting and reached similar values to the gel electrodes in the clinical setting. Finally, it was found that for artefact percentages above 3%, Poincaré plots are instrumental to evaluate the origin of artefacts. In conclusion, the application of the ECG-belt in a home setting did not result in a reduction in signal quality compared to the ECG-belt used in the clinical setting, and thus provides new opportunities for patient pre-screening or follow-up.


Subject(s)
Electrocardiography/methods , Monitoring, Physiologic , Polysomnography/methods , Sleep Apnea Syndromes/diagnosis , Body Mass Index , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Sleep/physiology , Sleep Apnea Syndromes/physiopathology , Textiles , Wearable Electronic Devices
9.
J Allergy Clin Immunol ; 142(4): 1257-1271.e4, 2018 10.
Article in English | MEDLINE | ID: mdl-29391257

ABSTRACT

BACKGROUND: A particular characteristic of non-small cell lung cancer is the composition of the tumor microenvironment with a very high proportion of fibroblastic stromal cells (FSCs). OBJECTIVE: Lapses in our basic knowledge of fibroblast phenotype and function in the tumor microenvironment make it difficult to define whether FSC subsets exist that exhibit either tumor-promoting or tumor-suppressive properties. METHODS: We used gene expression profiling of lung versus tumor FSCs from patients with non-small cell lung cancer. Moreover, CCL19-expressing FSCs were studied in transgenic mouse models by using a lung cancer metastasis model. RESULTS: CCL19 mRNA expression in human tumor FSCs correlates with immune cell infiltration and intratumoral accumulation of CD8+ T cells. Mechanistic dissection in murine lung carcinoma models revealed that CCL19-expressing FSCs form perivascular niches to promote accumulation of CD8+ T cells in the tumor. Targeted ablation of CCL19-expressing tumor FSCs reduced immune cell recruitment and resulted in unleashed tumor growth. CONCLUSION: These data suggest that a distinct population of CCL19-producing FSCs fosters the development of an immune-stimulating intratumoral niche for immune cells to control cancer growth.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Chemokine CCL19/immunology , Fibroblasts/immunology , Lung Neoplasms/immunology , Stromal Cells/immunology , Animals , Carcinoma, Lewis Lung/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chemokine CCL19/genetics , Humans , Lung Neoplasms/genetics , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes/transplantation , Transcriptome , Tumor Microenvironment/immunology
10.
Int J Cancer ; 142(8): 1640-1651, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29194596

ABSTRACT

Vav3 is a key modulator of GTP-hydrolases of the Rho/Rac family, which are crucially involved in cell proliferation. Vav3 is alternatively spliced in full-length Vav3-alpha and N-terminal truncated Vav3.1 lacking its self-regulatory domains. The aim of our study was to estimate the clinical impact of Vav3 and all other Vav family members in ovarian cancer. Purification of a stem-cell like side-population (SP) from ovarian cancer cell lines was performed by flow cytometry/FACS. Differences in gene expression between SP and NSP were assessed by Gene Array analysis and confirmed by RT-PCR and immunoblot. In addition, Vav mRNA expression was determined in 150 epithelial ovarian cancers. Clinicopathological parameters, platinum-sensitivity and survival were analyzed and associated with Vav expression. SP fractions of ovarian cancer cell lines exhibited marked overexpression of Vav3.1 (p < 0.001). Vav1 and Vav2 did not prove to be of clinicopathologic relevance in ovarian cancer. High Vav3.1 expression correlated with higher FIGO stage and residual disease. Furthermore, Vav3.1 overexpression was associated with poor progression-free (HR = 2.820, p = 0.0001) and overall survival (HR = 2.842, p = 0.0001). Subgroup analyses revealed an impact of Vav3.1 on survival in Type-II but not in Type-I cancers. Notably, platinum-refractory cancers showed marked overexpression of Vav3.1 compared to other subsets of platinum-sensitivity (15.848 vs. 6.653, p = 0.0001). In conclusion, Vav3.1 is over-expressed in stem-cell like SP fractions and is clinically relevant in the pathophysiology of ovarian cancer. The N-terminal truncated Vav3.1 may be decisively involved in mechanisms causing genuine multi-drug resistance.


Subject(s)
Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Organoplatinum Compounds/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Aged , Cell Line, Tumor , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Middle Aged , Ovarian Neoplasms/genetics , Phosphorylation/drug effects , Prognosis , RNA, Messenger/metabolism
11.
Biochim Biophys Acta ; 1866(2): 276-289, 2016 12.
Article in English | MEDLINE | ID: mdl-27751894

ABSTRACT

Malignancy is fuelled by distinct subsets of stem-like cells which persist under treatment and provoke drug-resistant recurrence. Eradication of these cancer stem cells has therefore become a prime objective for the development and design of novel classes of anti-cancer therapeutics with improved clinical efficacy. Here, we portray potentially clinically-relevant hallmarks of cancer stem cells and focus on their recently appreciated properties of cell variability and plasticity, both of which make them elusive targets for cancer therapies. We reason that this 'disguise in heterogeneity' has fundamental implications for clinical management and elaborate on rational strategies to combat this diversity and target a broad range of tumorigenic cells. We propose exploitation of cancer stem cell niche dependence as a promising approach to interfere with various, rather than few, cancer stem cell subsets and suggest cancer-associated fibroblasts as a prime microenvironmental target for tumor stemness-depleting intervention.


Subject(s)
Neoplastic Stem Cells/drug effects , Stem Cell Niche/drug effects , Animals , Humans , Neoplasm Metastasis , Neoplastic Stem Cells/physiology , Stem Cell Niche/physiology , Tumor Microenvironment/drug effects
15.
Oncoimmunology ; 12(1): 2255459, 2023.
Article in English | MEDLINE | ID: mdl-37791231

ABSTRACT

The traditional picture of cancer patients as weak individuals requiring maximum rest and protection is beginning to dissolve. Too much focus on the medical side and one's own vulnerability and mortality might be counterproductive and not doing justice to the complexity of human nature. Unlike cytotoxic and lympho-depleting treatments, immune-engaging therapies strengthen the immune system and are typically less harmful for patients. Thus, cancer patients receiving checkpoint inhibitors are not viewed as being vulnerable per se, at least not in immunological and physical terms. This perspective article advocates a holistic approach to cancer immunotherapy, with an empowered patient in the center, focusing on personal resources and receiving domain-specific support from healthcare professionals. It summarizes recent evidence on non-pharmaceutical interventions to enhance the efficacy of immune checkpoint blockade and improve quality of life. These interventions target behavioral factors such as diet, physical activity, stress management, circadian timing of checkpoint inhibitor infusion, and waiving unnecessary co-medication curtailing immunotherapy efficacy. Non-pharmaceutical interventions are universally accessible, broadly applicable, instantly actionable, scalable, and economically sustainable, creating value for all stakeholders involved. Most importantly, this holistic framework re-emphasizes the patient as a whole and harnesses the full potential of anticancer immunity and checkpoint blockade, potentially leading to survival benefits. Digital therapeutics are proposed to accompany the patients on their mission toward change in lifestyle-related behaviors for creating optimal conditions for treatment efficacy and personal growth.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Quality of Life , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Immunotherapy
16.
JMIR Form Res ; 7: e38439, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36655551

ABSTRACT

BACKGROUND: Clinical deterioration can go unnoticed in hospital wards for hours. Mobile technologies such as wearables and smartphones enable automated, continuous, noninvasive ward monitoring and allow the detection of subtle changes in vital signs. Cough can be effectively monitored through mobile technologies in the ward, as it is not only a symptom of prevalent respiratory diseases such as asthma, lung cancer, and COVID-19 but also a predictor of acute health deterioration. In past decades, many efforts have been made to develop an automatic cough counting tool. To date, however, there is neither a standardized, sufficiently validated method nor a scalable cough monitor that can be deployed on a consumer-centric device that reports cough counts continuously. These shortcomings limit the tracking of coughing and, consequently, hinder the monitoring of disease progression in prevalent respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19 in the ward. OBJECTIVE: This exploratory study involved the validation of an automated smartphone-based monitoring system for continuous cough counting in 2 different modes in the ward. Unlike previous studies that focused on evaluating cough detection models on unseen data, the focus of this work is to validate a holistic smartphone-based cough detection system operating in near real time. METHODS: Automated cough counts were measured consistently on devices and on computers and compared with cough and noncough sounds counted manually over 8-hour long nocturnal recordings in 9 patients with pneumonia in the ward. The proposed cough detection system consists primarily of an Android app running on a smartphone that detects coughs and records sounds and secondarily of a backend that continuously receives the cough detection information and displays the hourly cough counts. Cough detection is based on an ensemble convolutional neural network developed and trained on asthmatic cough data. RESULTS: In this validation study, a total of 72 hours of recordings from 9 participants with pneumonia, 4 of whom were infected with SARS-CoV-2, were analyzed. All the recordings were subjected to manual analysis by 2 blinded raters. The proposed system yielded a sensitivity and specificity of 72% and 99% on the device and 82% and 99% on the computer, respectively, for detecting coughs. The mean differences between the automated and human rater cough counts were -1.0 (95% CI -12.3 to 10.2) and -0.9 (95% CI -6.5 to 4.8) coughs per hour within subject for the on-device and on-computer modes, respectively. CONCLUSIONS: The proposed system thus represents a smartphone cough counter that can be used for continuous hourly assessment of cough frequency in the ward.

17.
ERJ Open Res ; 9(3)2023 Jul.
Article in English | MEDLINE | ID: mdl-37143837

ABSTRACT

Background: Cough represents a cardinal symptom of acute respiratory tract infections. Generally associated with disease activity, cough holds biomarker potential and might be harnessed for prognosis and personalised treatment decisions. Here, we tested the suitability of cough as a digital biomarker for disease activity in coronavirus disease 2019 (COVID-19) and other lower respiratory tract infections. Methods: We conducted a single-centre, exploratory, observational cohort study on automated cough detection in patients hospitalised for COVID-19 (n=32) and non-COVID-19 pneumonia (n=14) between April and November 2020 at the Cantonal Hospital St Gallen, Switzerland. Cough detection was achieved using smartphone-based audio recordings coupled to an ensemble of convolutional neural networks. Cough levels were correlated to established markers of inflammation and oxygenation. Measurements and main results: Cough frequency was highest upon hospital admission and declined steadily with recovery. There was a characteristic pattern of daily cough fluctuations, with little activity during the night and two coughing peaks during the day. Hourly cough counts were strongly correlated with clinical markers of disease activity and laboratory markers of inflammation, suggesting cough as a surrogate of disease in acute respiratory tract infections. No apparent differences in cough evolution were observed between COVID-19 and non-COVID-19 pneumonia. Conclusions: Automated, quantitative, smartphone-based detection of cough is feasible in hospitalised patients and correlates with disease activity in lower respiratory tract infections. Our approach allows for near real-time telemonitoring of individuals in aerosol isolation. Larger trials are warranted to decipher the use of cough as a digital biomarker for prognosis and tailored treatment in lower respiratory tract infections.

18.
Cytometry A ; 81(6): 517-22, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22407964

ABSTRACT

Cancer stem cells (CSC) are increasingly recognized as key target cells for cancer therapy because they are both tumorigenic and chemoresistant and, therefore, can give rise to recurrent disease. Side population (SP) sorting using an ultraviolet (UV) laser is an established method to isolate CSC based on ABC drug transporter-dependent (e.g., ABCG2) Hoechst 33342 efflux. We here show that Vybrant® DyeCycle™ Violet (DCV), a DNA-binding fluorophor allowing SP sorting using a non-UV laser (such as violet laser), is transported via P-glycoprotein (PgP). Because PgP might be particularly abundant in multidrug-resistant cancer cells rather than bona fide CSC, investigators using DCV should be aware that this strategy might also detect PgP-expressing non-CSC.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Cell Separation/methods , Neoplasm Proteins/analysis , Neoplastic Stem Cells/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Benzimidazoles , Biological Transport , False Positive Reactions , Flow Cytometry , Fluorescent Dyes , Humans , K562 Cells , Lasers , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology , Ultraviolet Rays
19.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36343977

ABSTRACT

The host microbiome is polymorphic, compartmentalized, and composed of distinctive tissue microbiomes. While research in the field of cancer immunotherapy has provided an improved understanding of the interaction with the gastrointestinal microbiome, the significance of the tumor-associated microbiome has only recently been grasped. This article provides a state-of-the-art review about the tumor-associated microbiome and sheds light on how local tumor microbiota shapes anticancer immunity and influences checkpoint immunotherapy outcome. The direct route of interaction between cancer cells, immune cells, and microbiota in the tumor microenvironment is emphasized and advocates a focus on the tumor-associated microbiome in addition to the spatially separated gut compartment. Since the mechanisms underlying checkpoint immunotherapy modulation by tumor-associated microbiota remain largely elusive, future research should dissect the pathways involved and outline strategies to therapeutically modulate microbes and their products within the tumor microenvironment. A more detailed knowledge about the mechanisms governing the composition and functional quality of the tumor microbiome will improve cancer immunotherapy and advance precision medicine for solid tumors.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL