Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Methods ; 18(5): 557-563, 2021 05.
Article in English | MEDLINE | ID: mdl-33963344

ABSTRACT

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.


Subject(s)
Deep Learning , Heart/physiology , Image Processing, Computer-Assisted/methods , Microscopy/methods , Animals , Biomechanical Phenomena , Calcium/chemistry , Larva/physiology , Oryzias/physiology , Reproducibility of Results , Zebrafish/physiology
2.
Nat Methods ; 18(10): 1253-1258, 2021 10.
Article in English | MEDLINE | ID: mdl-34594033

ABSTRACT

Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence, Multiphoton/methods , Neuroimaging/methods , Animals , Astrocytes/metabolism , Calcium Signaling , Female , Green Fluorescent Proteins , Male , Mice , Mice, Transgenic , Software , Thy-1 Antigens
3.
Mol Pharmacol ; 91(3): 250-262, 2017 03.
Article in English | MEDLINE | ID: mdl-28069778

ABSTRACT

Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and ß subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a ß subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.


Subject(s)
Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Chickens , Molecular Docking Simulation , Mutation/genetics , Protein Structure, Secondary , Protein Subunits/chemistry , Rats , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Structural Homology, Protein , Structure-Activity Relationship
4.
J Cereb Blood Flow Metab ; 40(12): 2401-2415, 2020 12.
Article in English | MEDLINE | ID: mdl-31842665

ABSTRACT

Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.


Subject(s)
Cognitive Dysfunction/metabolism , Gamma Rhythm/physiology , Hippocampus/metabolism , Pyramidal Cells/drug effects , Stress, Physiological/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cognitive Dysfunction/physiopathology , Electrophysiology/methods , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gamma Rhythm/drug effects , Hippocampus/drug effects , Hippocampus/physiopathology , Interneurons/classification , Interneurons/drug effects , Interneurons/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Rats , Rats, Wistar , Rotenone/administration & dosage , Rotenone/pharmacology , Stress, Physiological/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Uncoupling Agents/administration & dosage , Uncoupling Agents/pharmacology
5.
Biochem Biophys Res Commun ; 356(3): 727-32, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17382296

ABSTRACT

Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.


Subject(s)
Leukemia Inhibitory Factor/physiology , STAT3 Transcription Factor/physiology , STAT5 Transcription Factor/physiology , Animals , CCAAT-Enhancer-Binding Protein-delta/biosynthesis , Dexamethasone/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Insulin/pharmacology , Mammary Glands, Animal , Mice , Phosphorylation/drug effects , Prolactin/pharmacology , Promoter Regions, Genetic/drug effects , Proto-Oncogene Proteins c-fos/biosynthesis , STAT3 Transcription Factor/metabolism , bcl-X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL