ABSTRACT
OBJECTIVE: To retrospectively evaluate if texture-based radiomics features are able to detect interstitial lung disease (ILD) and to distinguish between the different disease stages in patients with systemic sclerosis (SSc) in comparison with mere visual analysis of high-resolution computed tomography (HRCT). METHODS: Sixty patients (46 females, median age 56 years) with SSc who underwent HRCT of the thorax were retrospectively analyzed. Visual analysis was performed by two radiologists for the presence of ILD features. Gender, age, and pulmonary function (GAP) stage was calculated from clinical data (gender, age, pulmonary function test). Data augmentation was performed and the balanced dataset was split into a training (70%) and a testing dataset (30%). For selecting variables that allow classification of the GAP stage, single and multiple logistic regression models were fitted and compared by using the Akaike information criterion (AIC). Diagnostic accuracy was evaluated from the area under the curve (AUC) from receiver operating characteristic (ROC) analyses, and diagnostic sensitivity and specificity were calculated. RESULTS: Values for some radiomics features were significantly lower (p < 0.05) and those of other radiomics features were significantly higher (p = 0.001) in patients with GAP2 compared with those in patients with GAP1. The combination of two specific radiomics features in a multivariable model resulted in the lowest AIC of 10.73 with an AUC of 0.96, 84% sensitivity, and 99% specificity. Visual assessment of fibrosis was inferior in predicting individual GAP stages (AUC 0.86; 83% sensitivity; 74% specificity). CONCLUSION: The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features indicating severity of SSc-ILD on HRCT, which are not recognized by visual analysis. KEY POINTS: ⢠Radiomics features can predict GAP stage with a sensitivity of 84% and a specificity of almost 100%. ⢠Extent of fibrosis on HRCT and a combined model of different visual HRCT-ILD features perform worse in predicting GAP stage. ⢠The correlation of radiomics with GAP stage, but not with the visually defined features of ILD-HRCT, implies that radiomics might capture features on HRCT, which are not recognized by visual analysis.
Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Female , Humans , Lung/diagnostic imaging , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/diagnostic imaging , Middle Aged , Respiratory Function Tests , Retrospective Studies , Scleroderma, Systemic/complications , Scleroderma, Systemic/diagnostic imagingSubject(s)
Chemoradiotherapy , Image Processing, Computer-Assisted , Oropharyngeal Neoplasms/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Follow-Up Studies , Humans , Oropharyngeal Neoplasms/blood supply , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/therapy , Perfusion Imaging/methods , Prognosis , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/blood supply , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/therapy , Tomography, X-Ray Computed/methods , Treatment Outcome , Tumor Hypoxia/drug effects , Tumor Hypoxia/radiation effectsABSTRACT
Purpose: This study evaluated pretreatment 2[18F]fluoro-2-deoxy-D-glucose (FDG)-PET/CT-based radiomic signatures for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibition (ICI). Material and method: Fifty-six consecutive metastatic melanoma patients treated with ICI and available imaging were included in the study and 330 metastatic lesions were individually, fully segmented on pre-treatment CT and FDG-PET imaging. Lesion hyperprogression (HPL) was defined as lesion progression according to RECIST 1.1 and doubling of tumor growth rate. Patient hyperprogression (PD-HPD) was defined as progressive disease (PD) according to RECIST 1.1 and presence of at least one HPL. Patient survival was evaluated with Kaplan-Meier curves. Mortality risk of PD-HPD status was assessed by estimation of hazard ratio (HR). Furthermore, we assessed with Fisher test and Mann-Whitney U test if demographic or treatment parameters were different between PD-HPD and the remaining patients. Pre-treatment PET/CT-based radiomic signatures were used to build models predicting HPL at three months after start of treatment. The models were internally validated with nested cross-validation. The performance metric was the area under receiver operating characteristic curve (AUC). Results: PD-HPD patients constituted 57.1% of all PD patients. PD-HPD was negatively related to patient overall survival with HR=8.52 (95%CI 3.47-20.94). Sixty-nine lesions (20.9%) were identified as progressing at 3 months. Twenty-nine of these lesions were classified as hyperprogressive, thereby showing a HPL rate of 8.8%. CT-based, PET-based, and PET/CT-based models predicting HPL at three months after the start of treatment achieved testing AUC of 0.703 +/- 0.054, 0.516 +/- 0.061, and 0.704 +/- 0.070, respectively. The best performing models relied mostly on CT-based histogram features. Conclusions: FDG-PET/CT-based radiomic signatures yield potential for pretreatment prediction of lesion hyperprogression, which may contribute to reducing the risk of delayed treatment adaptation in metastatic melanoma patients treated with ICI.
ABSTRACT
BACKGROUND: Careful selection of malignant pleural mesothelioma (MPM) patients for curative treatment is of highest importance, as the multimodal treatment regimen is challenging for patients and harbors a high risk of substantial toxicity. Radiomics-a quantitative method for image analysis-has shown its prognostic ability in different tumor entities and could therefore play an important role in optimizing patient selection for radical cancer treatment. So far, radiomics as a prognostic tool in MPM was not investigated. MATERIALS AND METHODS: This study is based on 72 MPM patients treated with surgery in a curative intent at our institution between 2009 and 2017. Pre-treatment Fluorine-18 fluorodeoxyglucose (FDG) PET and CT scans were used for radiomics outcome modeling. After extraction of 1404 CT and 1410 FDG PET features from each image, a preselection by principal component analysis was performed to include only robust, non-redundant features for the cox regression to predict the progression-free survival (PFS) and the overall survival (OS). Results were validated on a separate cohort. Additionally, SUVmax and SUVmean, and volume were tested for their prognostic ability for PFS and OS. RESULTS: For the PFS a concordance index (c-index) of 0.67 (95% CI 0.52-0.82) and 0.66 (95% CI 0.57-0.78) for the training cohort (n = 36) and internal validation cohort (n = 36), respectively, were obtained for the PET radiomics model. The PFS advantage of the low-risk group translated also into an OS advantage. On CT images, no radiomics model could be trained. SUV max and SUV mean were also not prognostic in terms of PFS and OS. CONCLUSION: We were able to build a successful FDG PET radiomics model for the prediction of PFS in MPM. Radiomics could serve as a tool to aid clinical decision support systems for treatment of MPM in future.
ABSTRACT
This study aimed to identify a set of stable radiomic parameters in CT perfusion (CTP) maps with respect to CTP calculation factors and image discretization, as an input for future prognostic models for local tumor response to chemo-radiotherapy. Pre-treatment CTP images of eleven patients with oropharyngeal carcinoma and eleven patients with non-small cell lung cancer (NSCLC) were analyzed. 315 radiomic parameters were studied per perfusion map (blood volume, blood flow and mean transit time). Radiomics robustness was investigated regarding the potentially standardizable (image discretization method, Hounsfield unit (HU) threshold, voxel size and temporal resolution) and non-standardizable (artery contouring and noise threshold) perfusion calculation factors using the intraclass correlation (ICC). To gain added value for our model radiomic parameters correlated with tumor volume, a well-known predictive factor for local tumor response to chemo-radiotherapy, were excluded from the analysis. The remaining stable radiomic parameters were grouped according to inter-parameter Spearman correlations and for each group the parameter with the highest ICC was included in the final set. The acceptance level was 0.9 and 0.7 for the ICC and correlation, respectively. The image discretization method using fixed number of bins or fixed intervals gave a similar number of stable radiomic parameters (around 40%). The potentially standardizable factors introduced more variability into radiomic parameters than the non-standardizable ones with 56-98% and 43-58% instability rates, respectively. The highest variability was observed for voxel size (instability rate >97% for both patient cohorts). Without standardization of CTP calculation factors none of the studied radiomic parameters were stable. After standardization with respect to non-standardizable factors ten radiomic parameters were stable for both patient cohorts after correction for inter-parameter correlations. Voxel size, image discretization, HU threshold and temporal resolution have to be standardized to build a reliable predictive model based on CTP radiomics analysis.