Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Mol Cell Cardiol ; 189: 52-65, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346641

ABSTRACT

Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cell Differentiation/physiology , Adipocytes , Action Potentials
2.
Semin Cell Dev Biol ; 119: 49-60, 2021 11.
Article in English | MEDLINE | ID: mdl-33952430

ABSTRACT

Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.


Subject(s)
Myocytes, Cardiac/physiology , Tissue Engineering/methods , Transcriptome/physiology , Cell Differentiation , Humans
3.
Pflugers Arch ; 473(7): 1023-1039, 2021 07.
Article in English | MEDLINE | ID: mdl-33928456

ABSTRACT

Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.


Subject(s)
Antigens, Surface/metabolism , Biomarkers/metabolism , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Humans , Immunophenotyping/methods , Phenotype
4.
Pflugers Arch ; 473(7): 1041-1059, 2021 07.
Article in English | MEDLINE | ID: mdl-33830329

ABSTRACT

Proper protein glycosylation is critical to normal cardiomyocyte physiology. Aberrant glycosylation can alter protein localization, structure, drug interactions, and cellular function. The in vitro differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CM) has become increasingly important to the study of protein function and to the fields of cardiac disease modeling, drug testing, drug discovery, and regenerative medicine. Here, we offer our perspective on the importance of protein glycosylation in hPSC-CM. Protein glycosylation is dynamic in hPSC-CM, but the timing and extent of glycosylation are still poorly defined. We provide new data highlighting how observed changes in hPSC-CM glycosylation may be caused by underlying differences in the protein or transcript abundance of enzymes involved in building and trimming the glycan structures or glycoprotein gene products. We also provide evidence that alternative splicing results in altered sites of glycosylation within the protein sequence. Our findings suggest the need to precisely define protein glycosylation events that may have a critical impact on the function and maturation state of hPSC-CM. Finally, we provide an overview of analytical strategies available for studying protein glycosylation and identify opportunities for the development of new bioinformatic approaches to integrate diverse protein glycosylation data types. We predict that these tools will promote the accurate assessment of protein glycosylation in future studies of hPSC-CM that will ultimately be of significant experimental and clinical benefit.


Subject(s)
Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/metabolism , Proteins/metabolism , Animals , Glycosylation , Humans
5.
Stem Cells ; 36(4): 501-513, 2018 04.
Article in English | MEDLINE | ID: mdl-29271023

ABSTRACT

Autophagy is a process essential for cell survival under stress condition. The patients with autosomal dominant polycystic kidney disease, which is caused by polycystin-1 or polycystin-2 (PKD2) mutation, display cardiovascular abnormalities and dysregulation in autophagy. However, it is unclear whether PKD2 plays a role in autophagy. In the present study, we explored the functional role of PKD2 in autophagy and apoptosis in human embryonic stem cell-derived cardiomyocytes. HES2 hESC line-derived cardiomyocytes (HES2-CMs) were transduced with adenoviral-based PKD2-shRNAs (Ad-PKD2-shRNAs), and then cultured with normal or glucose-free medium for 3 hours. Autophagy was upregulated in HES2-CMs under glucose starvation, as indicated by increased microtubule-associated protein 1 light chain 3-II level in immunoblots and increased autophagosome and autolysosome formation. Knockdown of PKD2 reduced the autophagic flux and increased apoptosis under glucose starvation. In Ca2+ measurement, Ad-PKD2-shRNAs reduced caffeine-induced cytosolic Ca2+ rise. Co-immunoprecipitation and in situ proximity ligation assay demonstrated an increased physical interaction of PKD2 with ryanodine receptor 2 (RyR2) under glucose starvation condition. Furthermore, Ad-PKD2-shRNAs substantially attenuated the starvation-induced activation of AMP-activated protein kinase (AMPK) and inactivation of mammalian target of rapamycin (mTOR). The present study for the first time demonstrates that PKD2 functions to promote autophagy under glucose starvation, thereby protects cardiomyocytes from apoptotic cell death. The mechanism may involve PKD2 interaction with RyR2 to alter Ca2+ release from sarcoplasmic reticulum, consequently modulating the activity of AMPK and mTOR, resulting in alteration of autophagy and apoptosis. Stem Cells 2018;36:501-513.


Subject(s)
Autophagy , Glucose/metabolism , Human Embryonic Stem Cells/metabolism , Myocytes, Cardiac/metabolism , TRPP Cation Channels/biosynthesis , Apoptosis , Cell Line , Glucose/genetics , Human Embryonic Stem Cells/cytology , Humans , Myocytes, Cardiac/cytology , TRPP Cation Channels/genetics
6.
Nucleic Acids Res ; 45(D1): D1021-D1028, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27924044

ABSTRACT

In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/.


Subject(s)
Databases, Genetic , Plants/genetics , Plants/metabolism , Search Engine , Biological Transport , Intracellular Space , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
7.
Stem Cells ; 34(6): 1527-40, 2016 06.
Article in English | MEDLINE | ID: mdl-26866517

ABSTRACT

Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;34:1527-1540.


Subject(s)
Cell Differentiation , Demethylation , Histone Demethylases/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription Factors/metabolism , Animals , Apoptosis , Cell Lineage , Cell Proliferation , Cell Survival , Gene Deletion , Gene Knockdown Techniques , Humans , Mesoderm/cytology , Mice , Models, Biological , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
Nucleic Acids Res ; 42(Web Server issue): W130-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24875471

ABSTRACT

Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein-protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.


Subject(s)
Chromatin Immunoprecipitation , Gene Expression Profiling , Gene Regulatory Networks , Protein Interaction Mapping , Software , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , High-Throughput Nucleotide Sequencing , Humans , Internet , MCF-7 Cells , Mice , Protein Processing, Post-Translational , Rats , Transcription Factors/metabolism
13.
Exp Cell Res ; 319(2): 120-5, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23022397

ABSTRACT

Transplantation of embryonic stem cell- or induced pluripotent stem cell-derived cardiomyocytes (CMs) represents one promising approach for the treatment of myocardial infarction and failing hearts. Cardiac differentiation systems from these pluripotent stem cells (PSCs) can also be employed to better understand early developmental biology, drug discovery, toxicology testing, and disease modeling. A prerequisite to attain these goals is the ability to generate functional CMs in an efficient and reliable way. The lack of CM maturation must also be overcome, and appropriate methods for introducing PSC-CMs into heart while maintaining cell viability must be optimized. The past few years have seen major advances both in the differentiation, characterization and application of these cells to biological systems. Here we review recent progress, especially those performed in China, in basic stem cell biology involving studies of cardiogenesis and CMs through PSC differentiation, approaches for chamber-specific CM differentiation, maturation processes involving regulation of intracellular Ca(2+) signals, and applications.


Subject(s)
Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation , Cell Survival , China , Humans
14.
Mol Cell Proteomics ; 11(8): 303-16, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22493178

ABSTRACT

Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.


Subject(s)
Cell Separation/methods , Glycoproteins/analysis , Immunophenotyping/methods , Membrane Proteins/analysis , Pluripotent Stem Cells/metabolism , Proteomics/methods , Animals , Cells, Cultured , Cytokine Receptor gp130/analysis , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/transplantation , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Mass Spectrometry , Mice , Mice, 129 Strain , Mice, Transgenic , Microscopy, Confocal , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Teratoma/metabolism , Teratoma/pathology
15.
Stem Cell Res ; 79: 103475, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941881

ABSTRACT

Marfan Syndrome, a connective tissue disorder caused by Fibrillin-1 (FBN1) gene mutations, induces disease in the ocular, musculoskeletal, and cardiovascular systems and increases aortic vulnerability to rupture associated with high mortality rates. We describe an induced pluripotent stem cell line (HFD1) generated from patient-derived human dermal fibroblasts harboring a heterozygous c.3338-2A>C intronic splice acceptor site variant preceding Exon 28 of FBN1. The clonal line, which produces abnormal FBN1 splice variants, has a normal karyotype, expresses appropriate stemness markers, and maintains trilineage differentiation potential. This line represents a valuable resource for studying how abnormal splicing variants contribute to Marfan Syndrome.

16.
Genes (Basel) ; 14(10)2023 09 25.
Article in English | MEDLINE | ID: mdl-37895213

ABSTRACT

Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Cardiomyopathies/metabolism , Phenotype
17.
Stem Cell Res Ther ; 14(1): 247, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37705079

ABSTRACT

AIMS: Dissecting complex interactions among transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are central for understanding heart development and function. Although computational approaches and platforms have been described to infer relationships among regulatory factors and genes, current approaches do not adequately account for how highly diverse, interacting regulators that include noncoding RNAs (ncRNAs) control cardiac gene expression dynamics over time. METHODS: To overcome this limitation, we devised an integrated framework, cardiac gene regulatory modeling (CGRM) that integrates LogicTRN and regulatory component analysis bioinformatics modeling platforms to infer complex regulatory mechanisms. We then used CGRM to identify and compare the TF-ncRNA gene regulatory networks that govern early- and late-stage cardiomyocytes (CMs) generated by in vitro differentiation of human pluripotent stem cells (hPSC) and ventricular and atrial CMs isolated during in vivo human cardiac development. RESULTS: Comparisons of in vitro versus in vivo derived CMs revealed conserved regulatory networks among TFs and ncRNAs in early cells that significantly diverged in late staged cells. We report that cardiac genes ("heart targets") expressed in early-stage hPSC-CMs are primarily regulated by MESP1, miR-1, miR-23, lncRNAs NEAT1 and MALAT1, while GATA6, HAND2, miR-200c, NEAT1 and MALAT1 are critical for late hPSC-CMs. The inferred TF-miRNA-lncRNA networks regulating heart development and contraction were similar among early-stage CMs, among individual hPSC-CM datasets and between in vitro and in vivo samples. However, genes related to apoptosis, cell cycle and proliferation, and transmembrane transport showed a high degree of divergence between in vitro and in vivo derived late-stage CMs. Overall, late-, but not early-stage CMs diverged greatly in the expression of "heart target" transcripts and their regulatory mechanisms. CONCLUSIONS: In conclusion, we find that hPSC-CMs are regulated in a cell autonomous manner during early development that diverges significantly as a function of time when compared to in vivo derived CMs. These findings demonstrate the feasibility of using CGRM to reveal dynamic and complex transcriptional and posttranscriptional regulatory interactions that underlie cell directed versus environment-dependent CM development. These results with in vitro versus in vivo derived CMs thus establish this approach for detailed analyses of heart disease and for the analysis of cell regulatory systems in other biomedical fields.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Transcription Factors/genetics , MicroRNAs/genetics , Myocytes, Cardiac , Heart Ventricles
18.
Stem Cell Res Ther ; 14(1): 167, 2023 06 25.
Article in English | MEDLINE | ID: mdl-37357314

ABSTRACT

BACKGROUND: Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS: Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS: Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION: CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Animals , Mice , Bone Marrow/pathology , Mesenchymal Stem Cells/metabolism , Acute Disease
19.
Nat Cardiovasc Res ; 2(1): 76-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36950336

ABSTRACT

Cardiac cell surface proteins are drug targets and useful biomarkers for discriminating among cellular phenotypes and disease states. Here we developed an analytical platform, CellSurfer, that enables quantitative cell surface proteome (surfaceome) profiling of cells present in limited quantities, and we apply it to isolated primary human heart cells. We report experimental evidence of surface localization and extracellular domains for 1,144 N-glycoproteins, including cell-type-restricted and region-restricted glycoproteins. We identified a surface protein specific for healthy cardiomyocytes, LSMEM2, and validated an anti-LSMEM2 monoclonal antibody for flow cytometry and imaging. Surfaceome comparisons among pluripotent stem cell derivatives and their primary counterparts highlighted important differences with direct implications for drug screening and disease modeling. Finally, 20% of cell surface proteins, including LSMEM2, were differentially abundant between failing and non-failing cardiomyocytes. These results represent a rich resource to advance development of cell type and organ-specific targets for drug delivery, disease modeling, immunophenotyping and in vivo imaging.

20.
Drug Discov Today Dis Models ; 9(4): e161-e170, 2012.
Article in English | MEDLINE | ID: mdl-23682293

ABSTRACT

The establishment of human embryonic stem cell lines (hESCs) created the basis for new approaches in regenerative medicine and drug discovery. Despite the potential of hESCs for cell based therapies, ethical controversies limit their use. These obstacles could be overcome by induced pluripotent stem cells (iPSCs) that are generated by reprogramming somatic cells. Before iPSCs can be used for clinical applications, however, they must be thoroughly analyzed for aberrations in the genome, epigenome, transcriptome, and proteome. Here, we review how 'omics' technologies can be employed for a quantitative and definitive assessment of these cells.

SELECTION OF CITATIONS
SEARCH DETAIL