Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Publication year range
1.
Blood ; 143(1): 42-56, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37729611

ABSTRACT

ABSTRACT: The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3- proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell-like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell-like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Multiple Myeloma/drug therapy , Epigenesis, Genetic , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
2.
Blood ; 144(3): 283-295, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38598835

ABSTRACT

ABSTRACT: Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2). A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high-energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased nicotinamide adenine dinucleotide phosphate (NADP[H]) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage, and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine, compromising the synthesis of creatine from its precursor, guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage, and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high-energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum, consistent with impaired use of mitochondrial adenosine triphosphate (ATP). Accordingly, AK2 suppression increased the sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.


Subject(s)
Adenylate Kinase , Histone-Lysine N-Methyltransferase , Multiple Myeloma , Translocation, Genetic , Humans , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Adenylate Kinase/metabolism , Adenylate Kinase/genetics , Chromosomes, Human, Pair 14/genetics , Epigenome , Chromosomes, Human, Pair 4/genetics , Carbon/metabolism , Cell Line, Tumor , Repressor Proteins
3.
Blood ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046770

ABSTRACT

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration.

4.
Blood ; 137(26): 3604-3615, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33649772

ABSTRACT

Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain-binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).


Subject(s)
B-Lymphocytes/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Multiple Myeloma , Sulfonamides/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 11/metabolism , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 14/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Knockdown Techniques , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Translocation, Genetic/drug effects
6.
Am J Hematol ; 96(4): 418-427, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33368455

ABSTRACT

Venetoclax (Ven) is a selective small-molecule inhibitor of BCL-2 that exhibits antitumoral activity against MM cells with t(11;14) translocation. We evaluated the safety and efficacy of Ven and dexamethasone (VenDex) combination in patients with t(11;14) positive relapsed/refractory (R/R) multiple myeloma (MM). This open-label, multicenter study had two distinct phases (phase one [P1], phase two [P2]). Patients in both phases received VenDex (oral Ven 800 mg/day + oral Dex 40 mg [20 mg for patients ≥75 years] on days 1, 8, and 15, per 21-day cycle). The primary objective of the P1 VenDex cohort was to assess safety and pharmacokinetics. Phase two further evaluated efficacy with objective response rate (ORR) and very good partial response or better. Correlative studies explored baseline BCL2 (BCL-2) and BCL2L1 (BCL-XL ) gene expression, cytogenetics, and recurrent somatic mutations in MM. Twenty and 31 patients in P1 and P2 with t(11;14) positive translocation received VenDex. P1/P2 patients had received a median of 3/5 lines of prior therapy, and 20%/87% were refractory to daratumumab. Predominant grade 3/4 hematological adverse events (AEs) with ≥10% occurrence included lymphopenia (20%/19%), neutropenia (15%/7%), thrombocytopenia (10%/10%), and anemia (5%/16%). At a median follow-up of 12.3/9.2 months, ORR was 60%/48%. The duration of response estimate at 12 months was 50%/61%, and the median time to progression was 12.4/10.8 months. In biomarker evaluable patients, response to VenDex was independent of concurrent del(17p) or gain(1q) and mutations in key oncogenic signaling pathways, including MAPK and NF-kB. VenDex demonstrated efficacy and manageable safety in heavily-pre-treated patients with t(11;14) R/R MM.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Multiple Myeloma/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Salvage Therapy , Sulfonamides/pharmacology , Aged , Antibodies, Monoclonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Bone Marrow/pathology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 14/genetics , Combined Modality Therapy , Dexamethasone/administration & dosage , Female , Follow-Up Studies , Genes, bcl-2 , Hematologic Diseases/chemically induced , Hematopoietic Stem Cell Transplantation , Humans , Infections/etiology , Kaplan-Meier Estimate , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Recurrence , Signal Transduction , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Sulfonamides/pharmacokinetics , Translocation, Genetic , bcl-X Protein
7.
Cancer ; 125(17): 2991-3000, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31090928

ABSTRACT

BACKGROUND: The efficacy of daratumumab (DARA) both as a monotherapy and in combination with standard-of-care regimens in multiple myeloma (MM) has been established in clinical trials. This article presents a retrospective analysis of the safety and efficacy of DARA in combination with pomalidomide (POM) and dexamethasone (ie, daratumumab, pomalidomide, and dexamethasone [DARA-POM-D]) and, more importantly, the long-term follow-up of a cohort that was naive to DARA and POM as well as a cohort in which the utility of re-treatment was evaluated among patients who were DARA- and/or POM-refractory. METHODS: Thirty-four consecutive patients with relapsed and/or refractory MM treated with DARA-POM-D at the Winship Cancer Institute of Emory University from January 2015 through July 2016 were included in the analysis. The study was approved by Emory University's institutional review board. All received prior proteasome inhibitors and immunomodulatory drugs (IMiDs) and were refractory to their last line of therapy. RESULTS: All patients were lenalidomide-refractory, and 91% were bortezomib-refractory. Two cohorts were identified on the basis of prior exposure to DARA and/or POM. Cohort 1 (12 patients) was DARA- and POM-naive, and cohort 2 (22 patients) was DARA- and/or POM-refractory. A subgroup of 12 patients in cohort 2 (cohort 3) was DARA- and POM-refractory. The combination's tolerability was consistent with the results of the published phase 1b study (EQUULES) that evaluated the combination and no new safety signals were observed. The overall response rates (ORRs) were 91.7%, 40.9%, and 33.3% in cohorts 1, 2, and 3, respectively. Deep responses, including 4 stringent complete responses, were observed in cohort 1. In cohort 2, the ORR comprised 8 partial responses (PRs) and 1 very good PR. The median progression-free survival (PFS) was not reached in cohort 1 at a median follow-up of 41 months, and it was 3.2 months in cohort 2. DARA-POM-D not only was effective in DARA- and POM-naive patients but also produced clinical responses in a third of patients re-treated with these drugs. CONCLUSIONS: A better than quadrupled PFS benefit observed in cohort 1 in comparison with the previously reported benefit in the EQUULEUS trial (which led to US Food and Drug Administration approval of the DARA-POM-D combination) highlights the fact that the introduction of monoclonal antibody combination strategies and IMiDs as earlier lines of therapeutic options potentially could deliver better clinical outcomes. One-third of patients refractory to separate lines of DARA and/or POM responded when they were re-treated with a combination, and this resulted in survival benefits equivalent to those of other antimyeloma agents/combinations available for DARA-refractory patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bortezomib/therapeutic use , Cohort Studies , Dexamethasone/administration & dosage , Female , Humans , Lenalidomide/therapeutic use , Male , Middle Aged , Multiple Myeloma/mortality , Neoplasm Recurrence, Local/drug therapy , Retrospective Studies , Thalidomide/administration & dosage , Treatment Outcome
8.
Cancer ; 125(3): 416-423, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30332496

ABSTRACT

BACKGROUND: Primary plasma cell leukemia (pPCL) is an aggressive plasma cell disorder characterized by circulating plasma cells and a poor prognosis. Although patients who have pPCL benefit from the use of stem cell transplantation (SCT) and novel agents, their prognosis remains inferior to that of patients who have myeloma. METHODS: This was a retrospective analysis of 38 consecutive patients with pPCL who were diagnosed between October 2005 and July 2016 and were registered in the Winship Cancer Institute of Emory University database. Baseline characteristics as well as data about treatment and survival outcomes were collected. RESULTS: The median patient age at diagnosis was 58 years. All patients received a bortezomib-based induction regimen, and 92% received both bortezomib and an immunomodulatory drug (thalidomide or lenalidomide); in addition, 74% of patients underwent autologous SCT (ASCT), and 61% received maintenance therapy. The best response to first-line therapy was a partial response or better in 87% of patients, and 45% had a complete response (CR). The achievement of ≥CR was a predictor for prolonged progression-free survival (PFS) and overall survival (OS). The median PFS was 20 months, and the median OS was 33 months. PFS was prolonged in patients who underwent ASCT compared with those who did not undergo ASCT (25 vs 6 months; P = .004), and patients who received maintenance therapy after ASCT had prolonged median PFS (27 vs 11 months; P = .03) and a trend toward prolonged OS (median, 38 vs 22 months; P = .06) compared with those who did not receive maintenance therapy. CONCLUSIONS: The current data support the use of regimens combining novel agents in the upfront treatment of patients with pPCL as well as the role of ASCT and maintenance therapy for long-term disease control.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Plasma Cell/mortality , Leukemia, Plasma Cell/therapy , Adult , Aged , Aged, 80 and over , Bortezomib/therapeutic use , Chemotherapy, Adjuvant , Drugs, Investigational/therapeutic use , Female , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Plasma Cell/diagnosis , Leukemia, Plasma Cell/drug therapy , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis , Thalidomide/therapeutic use , Therapies, Investigational , Transplantation, Autologous , Treatment Outcome
9.
Cancer ; 125(2): 185-193, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30480777

ABSTRACT

High-dose therapy (HDT) and autologous stem cell transplantation (ASCT) are established components in the treatment of multiple myeloma; however, undergoing transplantation usually requires hematopoietic support, which poses a challenge among patients who are unwilling to receive blood products. Most transplant centers decline HDT/ASCT to these patients because of safety concerns. Here, the authors' institutional data on safety, engraftment parameters, and survival outcomes after bloodless ASCT (BL-ASCT) are examined among patients with myeloma. This retrospective case-control study included patients who underwent BL-ASCT and Transfusion-supported ASCT (TS-ASCT) at Emory University Hospital between August 2006 and August 2016. In total, 24 patients who underwent BL-ASCT and 70 who underwent TS-ASCT were included. The median time for neutrophil engraftment, platelet engraftment and the median length of hospital stay all were equivalent for both groups. There were no transplant-related cardiovascular complications or mortality in either the BL-ASCT group or the TS-ASCT group. The median progression-free survival was 36 months and 44 months in the BL-ASCT and TS-ASCT groups, respectively (P = .277), and the median OS was not reached in either group at a median follow-up of 59 months after ASCT (P = .627). There was no transplant-related mortality at the 100-day or 1-year mark in either group. BL-ASCT is safe and feasible; transplant-related mortality, cardiovascular and hematologic complications are similar to those associated with TS-ASCT. Furthermore, BL-ASCT can yield similar engraftment and survival parameters comparable to those observed with TS-ASCT.


Subject(s)
Multiple Myeloma/mortality , Multiple Myeloma/therapy , Stem Cell Transplantation/methods , Adult , Aged , Amyloidosis/mortality , Amyloidosis/therapy , Blood Transfusion , Cardiovascular Diseases/etiology , Case-Control Studies , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Male , Middle Aged , Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/mortality , Survival Analysis , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods , Transplantation, Autologous/mortality , Treatment Outcome
10.
Blood ; 139(13): 1927-1928, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35357482
11.
Blood ; 129(14): 1969-1979, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28151428

ABSTRACT

Multiple myeloma is highly dependent on the bone marrow microenvironment until progressing to very advanced extramedullary stages of the disease such as plasma cell leukemia. Stromal cells in the bone marrow secrete a variety of cytokines that promote plasma cell survival by regulating antiapoptotic members of the Bcl-2 family including Mcl-1, Bcl-xL, and Bcl-2. Although the antiapoptotic protein on which a cell depends is typically consistent among normal cells of a particular phenotype, Bcl-2 family dependence is highly heterogeneous in multiple myeloma. Although normal plasma cells and most multiple myeloma cells require Mcl-1 for survival, a subset of myeloma is codependent on Bcl-2 and/or Bcl-xL We investigated the role of the bone marrow microenvironment in determining Bcl-2 family dependence in multiple myeloma. We used the Bcl-2/Bcl-xL inhibitor ABT-737 to study the factors regulating whether myeloma is Mcl-1 dependent, and thus resistant to ABT-737-induced apoptosis, or Bcl-2/Bcl-xL codependent, and thus sensitive to ABT-737. We demonstrate that bone marrow stroma is capable of inducing Mcl-1 dependence through the production of the plasma cell survival cytokine interleukin-6 (IL-6). IL-6 upregulates Mcl-1 transcription in a STAT3-dependent manner, although this occurred in a minority of the cells tested. In all cells, IL-6 treatment results in posttranslational modification of the proapoptotic protein Bim. Phosphorylation of Bim shifts its binding from Bcl-2 and Bcl-xL to Mcl-1, an effect reversed by MEK inhibition. Blocking IL-6 or downstream signaling restored Bcl-2/Bcl-xL dependence and may therefore represent a clinically useful strategy to enhance the activity of Bcl-2 inhibitors.


Subject(s)
Bone Marrow/metabolism , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Signal Transduction , Tumor Microenvironment , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Biphenyl Compounds/pharmacology , Bone Marrow/pathology , Cell Line, Tumor , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Nitrophenols/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Sulfonamides/pharmacology , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , bcl-X Protein/genetics , bcl-X Protein/metabolism
12.
Nucleic Acids Res ; 45(5): 2396-2407, 2017 03 17.
Article in English | MEDLINE | ID: mdl-27903915

ABSTRACT

The oncogenic transcription factor MYC and its binding partner MAX regulate gene expression by binding to DNA at enhancer-box (E-box) elements 5΄-CACGTG-3΄. In mammalian genomes, the central E-box CpG has the potential to be methylated at the 5-position of cytosine (5mC), or to undergo further oxidation to the 5-hydroxymethyl (5hmC), 5-formyl (5fC), or 5-carboxyl (5caC) forms. We find that MAX exhibits the greatest affinity for a 5caC or unmodified C-containing E-box, and much reduced affinities for the corresponding 5mC, 5hmC or 5fC forms. Crystallization of MAX with a 5caC modified E-box oligonucleotide revealed that MAX Arg36 recognizes 5caC using a 5caC-Arg-Guanine triad, with the next nearest residue to the carboxylate group being Arg60. In an analysis of >800 primary multiple myelomas, MAX alterations occurred at a frequency of ∼3%, more than half of which were single nucleotide substitutions affecting a basic clamp-like interface important for DNA interaction. Among these, arginines 35, 36 and 60 were the most frequently altered. In vitro binding studies showed that whereas mutation of Arg36 (R36W) or Arg35 (R35H/L) completely abolished DNA binding, mutation of Arg60 (R60Q) significantly reduced DNA binding, but retained a preference for the 5caC modified E-box. Interestingly, MAX alterations define a subset of myeloma patients with lower MYC expression and a better overall prognosis. Together these data indicate that MAX can act as a direct epigenetic sensor of E-box cytosine modification states and that local CpG modification and MAX variants converge to modulate the MAX-MYC transcriptional network.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cytosine/analogs & derivatives , E-Box Elements , Multiple Myeloma/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Arginine/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , CpG Islands , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , DNA/metabolism , Epigenesis, Genetic , Mutation , Protein Binding , Protein Conformation , Repressor Proteins/metabolism
13.
J Biol Chem ; 292(24): 10142-10152, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28468827

ABSTRACT

Contributions of metabolic changes to cancer development and maintenance have received increasing attention in recent years. Although many human cancers share similar metabolic alterations, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Using an RNAi-based screen targeting the majority of the known metabolic proteins, we recently found that oncogenic BRAFV600E up-regulates HMG-CoA lyase (HMGCL), which converts HMG-CoA to acetyl-CoA and a ketone body, acetoacetate, that selectively enhances BRAFV600E-dependent MEK1 activation in human cancer. Here, we identified HMG-CoA synthase 1 (HMGCS1), the upstream ketogenic enzyme of HMGCL, as an additional "synthetic lethal" partner of BRAFV600E Although HMGCS1 expression did not correlate with BRAFV600E mutation in human melanoma cells, HMGCS1 was selectively important for proliferation of BRAFV600E-positive melanoma and colon cancer cells but not control cells harboring active N/KRAS mutants, and stable knockdown of HMGCS1 only attenuated colony formation and tumor growth potential of BRAFV600E melanoma cells. Moreover, cytosolic HMGCS1 that co-localized with HMGCL and BRAFV600E was more important than the mitochondrial HMGCS2 isoform in BRAFV600E-expressing cancer cells in terms of acetoacetate production. Interestingly, HMGCL knockdown did not affect HMGCS1 expression levels, whereas HMGCS1 knockdown caused a compensating increase in HMGCL protein level because of attenuated protein degradation. However, this increase did not reverse the reduced ketogenesis in HMGCS1 knockdown cells. Mechanistically, HMGCS1 inhibition decreased intracellular acetoacetate levels, leading to reduced BRAFV600E-MEK1 binding and consequent MEK1 activation. We conclude that the ketogenic HMGCS1-HMGCL-acetoacetate axis may represent a promising therapeutic target for managing BRAFV600E-positive human cancers.


Subject(s)
Colonic Neoplasms/enzymology , Hydroxymethylglutaryl-CoA Synthase/metabolism , MAP Kinase Kinase 1/metabolism , Melanoma/enzymology , Neoplasm Proteins/metabolism , Oxo-Acid-Lyases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Acetoacetates/metabolism , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytosol/enzymology , Cytosol/metabolism , Enzyme Activation , Enzyme Stability , Female , Humans , Hydroxymethylglutaryl-CoA Synthase/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Synthase/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , MAP Kinase Kinase 1/chemistry , Melanoma/metabolism , Melanoma/pathology , Mice, Nude , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Transplantation , Oxo-Acid-Lyases/antagonists & inhibitors , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Proteolysis , Proto-Oncogene Proteins B-raf/genetics , RNA Interference , Tumor Burden
14.
Nucleic Acids Res ; 44(7): e69, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26826710

ABSTRACT

The identification of genes with specific patterns of change (e.g. down-regulated and methylated) as phenotype drivers or samples with similar profiles for a given gene set as drivers of clinical outcome, requires the integration of several genomic data types for which an 'integrate by intersection' (IBI) approach is often applied. In this approach, results from separate analyses of each data type are intersected, which has the limitation of a smaller intersection with more data types. We introduce a new method, GISPA (Gene Integrated Set Profile Analysis) for integrated genomic analysis and its variation, SISPA (Sample Integrated Set Profile Analysis) for defining respective genes and samples with the context of similar, a priori specified molecular profiles. With GISPA, the user defines a molecular profile that is compared among several classes and obtains ranked gene sets that satisfy the profile as drivers of each class. With SISPA, the user defines a gene set that satisfies a profile and obtains sample groups of profile activity. Our results from applying GISPA to human multiple myeloma (MM) cell lines contained genes of known profiles and importance, along with several novel targets, and their further SISPA application to MM coMMpass trial data showed clinical relevance.


Subject(s)
Genes, Neoplasm , Genomics/methods , Cell Line, Tumor , DNA Methylation , Gene Expression Profiling , Humans , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Mutation , Prognosis
15.
Blood ; 125(23): 3522-3, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26045592

ABSTRACT

In this issue of Blood, Peterson et al demonstrate that inhibition of both Usp9x and Usp24 results in efficient degradation of Mcl-1, induction of apoptosis, and inhibition of tumor growth in B-cell malignancies.


Subject(s)
Apoptosis/drug effects , Cyanoacrylates/pharmacology , Enzyme Inhibitors/pharmacology , Lymphoma, Mantle-Cell/drug therapy , Multiple Myeloma/drug therapy , Pyridines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Animals , Female , Humans , Male
16.
Blood ; 126(13): 1536-43, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26272217

ABSTRACT

The treatment of patients with myeloma has dramatically changed over the past decade due in part to the development of new agents and myeloma-specific targets. Despite these advancements, a group for whom the long-term benefit remains less clear are patients with genetically or clinically defined high-risk myeloma. In order to successfully treat these patients, it is important to first identify these patients, treat them with aggressive combination therapy, and employ the use of aggressive long-term maintenance therapy. Future directions include the use of new immune-based treatments (antibodies or cellular-based therapies) as well as target-driven approaches. Until these treatment approaches are better defined, this review will provide a potential treatment approach for standard- and high-risk myeloma that can be followed using agents and strategies that are currently available with the goal of improving progression-free and overall survival for these patients today.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematopoietic Stem Cell Transplantation , Immunosuppressive Agents/therapeutic use , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Aged , Bortezomib/therapeutic use , Female , Hematopoietic Stem Cell Transplantation/methods , Humans , Lenalidomide , Multiple Myeloma/drug therapy , Oligopeptides/therapeutic use , Proteasome Inhibitors/therapeutic use , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use
18.
J Immunol ; 194(10): 4717-28, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25833397

ABSTRACT

In health, long-lived plasma cells (LLPC) are essential for durable protective humoral immunity, and, conversely, in disease are a major source of pathogenic Abs in autoimmunity, graft rejection, and allergy. However, the molecular basis for their longevity is largely unknown. We have recently found that CD28 signaling in plasma cells (PC) is essential for sustaining Ab titers, by supporting the survival of LLPC, but not short-lived PC (SLPC). We now find that, unlike SLPC, CD28 activation in LLPC induces prosurvival downstream Vav signaling. Knockin mice with CD28 cytoplasmic tail mutations that abrogate Vav signaling (CD28-AYAA) had significantly fewer LLPC but unaffected SLPC numbers, whereas mice with mutations that abrogate PI3K signaling (CD28-Y170F) were indistinguishable from wild-type controls. This was consistent with the loss of CD28's prosurvival effect in LLPC from CD28-AYAA, but not CD28-Y170F, mice. Furthermore, the CD28 Vav motif in the B lineage was essential for the long-term maintenance of Ag-specific LLPC populations and Ab titers in vivo. Signaling downstream of the CD28 Vav motif induced previously undescribed transcriptional regulation of B lymphocyte-induced maturation protein-1, a key mediator of PC differentiation and maintenance. These findings suggest CD28 signaling in LLPC modulates the central B lymphocyte-induced maturation protein-1 transcriptional nexus involved in long-term survival and function.


Subject(s)
CD28 Antigens/metabolism , Plasma Cells/cytology , Plasma Cells/immunology , Signal Transduction/immunology , Transcription Factors/biosynthesis , Amino Acid Motifs , Animals , Antibody Formation/immunology , Blotting, Western , CD28 Antigens/immunology , Cell Differentiation/immunology , Cell Survival/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunoprecipitation , Lymphocyte Subsets/cytology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Plasma Cells/metabolism , Positive Regulatory Domain I-Binding Factor 1 , Proline , Real-Time Polymerase Chain Reaction , Transcription Factors/immunology , Up-Regulation
19.
Anal Bioanal Chem ; 409(20): 4683-4695, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28667385

ABSTRACT

Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.


Subject(s)
Arsenic/chemistry , Spectrum Analysis, Raman/methods , Arsenic/analysis , Colloids , Mass Spectrometry/methods , Metal Nanoparticles/chemistry
20.
J Cell Sci ; 127(Pt 10): 2217-26, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24610949

ABSTRACT

Caspase-3 is an effector caspase that is activated downstream of mitochondrial outer-membrane permeabilization (MOMP) during apoptosis. However, previous work has demonstrated that caspase-3-deficient mouse embryonic fibroblasts (MEFs) are resistant to mitochondrially mediated cell death and display a delay in the mitochondrial events of apoptosis, including Bax activation, MOMP and release of cytochrome c. Here, we show that caspase-3 regulates fibronectin secretion and impacts on cell morphology, adhesion and migration. Surprisingly, the catalytic activity of caspase-3 is not required for these non-apoptotic functions. Moreover, we found that caspase-3-deficient MEFs are not resistant to death by anoikis and that exogenous fibronectin protects wild-type MEFs from cell death induced by serum withdrawal. Taken together, our data indicate that procaspase-3 has a non-apoptotic function; it regulates the secretion of fibronectin and influences morphology, adhesion and migration. Furthermore, this novel procaspase-3 function might alter the apoptotic threshold of the cell.


Subject(s)
Caspase 3/metabolism , Cell Adhesion/physiology , Cell Movement/physiology , Fibronectins/metabolism , Animals , Apoptosis , Catalysis , Cell Survival/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL