Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Br J Haematol ; 204(1): 292-305, 2024 01.
Article in English | MEDLINE | ID: mdl-37876306

ABSTRACT

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Lipomatosis , Humans , Shwachman-Diamond Syndrome , Tumor Suppressor Protein p53/genetics , Lipomatosis/genetics , Codon, Nonsense , Myelopoiesis , Neutrophils/metabolism , Chemotaxis , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Exocrine Pancreatic Insufficiency/genetics , Ribosomes/metabolism
2.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948128

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Subject(s)
Calcification, Physiologic , Osteoblasts/metabolism , Shwachman-Diamond Syndrome/metabolism , Tumor Suppressor Protein p53/metabolism , Cells, Cultured , Female , Humans , Male , Osteoblasts/pathology , Proteins/genetics , Proteins/metabolism , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/pathology , Tumor Suppressor Protein p53/genetics
3.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652811

ABSTRACT

Growth hormone (GH) is best known for its prominent role in promoting prepubertal growth and in regulating body composition and metabolism during adulthood. In recent years, the possible role of GH in the modulation of mesenchymal stem cell (MSC) commitment has gained interest. MSCs, characterized by active self-renewal and differentiation potential, express GH receptors. In MSCs derived from different adult tissues, GH induces an inhibition of adipogenic differentiation and favors MSC differentiation towards osteogenesis. This activity of GH indicates that regulation of body composition by GH has already started in the tissue progenitor cells. These findings have fostered research on possible uses of MSCs treated with GH in those pathologies, where a lack of or delays in bone repair occur. After an overview of GH activities, this review will focus on the research that has characterized GH's effects on MSCs and on preliminary studies on the possible application of GH in bone regenerative medicine.


Subject(s)
Bone Regeneration , Growth Hormone/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation , Humans , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods
4.
Haematologica ; 103(6): 939-948, 2018 06.
Article in English | MEDLINE | ID: mdl-29567778

ABSTRACT

Although inhibitors of bromodomain and extra terminal domain (BET) proteins show promising clinical activity in different hematologic malignancies, a systematic analysis of the consequences of pharmacological BET inhibition on healthy hematopoietic (stem) cells is urgently needed. We found that JQ1 treatment decreases the numbers of pre-, immature and mature B cells while numbers of early pro-B cells remain constant. In addition, JQ1 treatment increases apoptosis in T cells, all together leading to reduced cellularity in thymus, bone marrow and spleen. Furthermore, JQ1 induces proliferation of long-term hematopoietic stem cells, thereby increasing stem cell numbers. Due to increased numbers, JQ1-treated hematopoietic stem cells engrafted better after stem cell transplantation and repopulated the hematopoietic system significantly faster after sublethal myeloablation. As quantity and functionality of hematopoietic stem cells determine the duration of life-threatening myelosuppression, BET inhibition might benefit patients in myelosuppressive conditions.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Self Renewal/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Apoptosis/drug effects , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Biomarkers , Cell Cycle/drug effects , Cell Proliferation/drug effects , Graft Survival/drug effects , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Immunophenotyping , Mice , Phenotype , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
5.
J Transl Med ; 15(1): 132, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592272

ABSTRACT

BACKGROUND: Betaine (BET), a component of many foods, is an essential osmolyte and a source of methyl groups; it also shows an antioxidant activity. Moreover, BET stimulates muscle differentiation via insulin like growth factor I (IGF-I). The processes of myogenesis and osteogenesis involve common mechanisms with skeletal muscle cells and osteoblasts sharing the same precursor. Therefore, we have hypothesized that BET might be effective on osteoblast cell differentiation. METHODS: The effect of BET was tested in human osteoblasts (hObs) derived from trabecular bone samples obtained from waste material of orthopedic surgery. Cells were treated with 10 mM BET at 5, 15, 60 min and 3, 6 and 24 h. The possible effects of BET on hObs differentiation were evaluated by real time PCR, western blot and immunofluorescence analysis. Calcium imaging was used to monitor intracellular calcium changes. RESULTS: Real time PCR results showed that BET stimulated significantly the expression of RUNX2, osterix, bone sialoprotein and osteopontin. Western blot and immunofluorescence confirmed BET stimulation of osteopontin protein synthesis. BET stimulated ERK signaling, key pathway involved in osteoblastogenesis and calcium signaling. BET induced a rise of intracellular calcium by means of the calcium ions influx from the extracellular milieu through the L-type calcium channels and CaMKII signaling activation. A significant rise in IGF-I mRNA at 3 and 6 h and a significant increase of IGF-I protein at 6 and 24 h after BET stimulus was detected. Furthermore, BET was able to increase significantly both SOD2 gene expression and protein content. CONCLUSIONS: Our study showed that three signaling pathways, i.e. cytosolic calcium influx, ERK activation and IGF-I production, are enhanced by BET in human osteoblasts. These pathways could have synergistic effects on osteogenic gene expression and protein synthesis, thus potentially leading to enhanced bone formation. Taken together, these results suggest that BET could be a promising nutraceutical therapeutic agent in the strategy to counteract the concomitant and interacting impact of sarcopenia and osteoporosis, i.e. the major determinants of senile frailty and related mortality.


Subject(s)
Betaine/pharmacology , Cell Differentiation/drug effects , Osteoblasts/cytology , Aged , Aged, 80 and over , Calcium/metabolism , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Membrane Potentials/drug effects , Models, Biological , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
6.
Elife ; 132024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661167

ABSTRACT

Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.


Subject(s)
Cytoskeleton , Homeodomain Proteins , Osteoblasts , Repressor Proteins , Signal Transduction , p21-Activated Kinases , Animals , Mice , Cell Adhesion , Cell Movement , Cytoskeleton/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Osteoblasts/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/deficiency , Repressor Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/deficiency
7.
Sci Transl Med ; 15(698): eabq3679, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37256933

ABSTRACT

Clinical evidence highlights a relationship between the blood and the bone, but the underlying mechanism linking these two tissues is not fully elucidated. Here, we used ß-thalassemia as a model of congenital anemia with bone and bone marrow (BM) niche defects. We demonstrate that fibroblast growth factor 23 (FGF23) is increased in patients and mice with ß-thalassemia because erythropoietin induces FGF23 overproduction in bone and BM erythroid cells via ERK1/2 and STAT5 pathways. We show that in vivo inhibition of FGF23 signaling by carboxyl-terminal FGF23 peptide is a safe and efficacious therapeutic strategy to rescue bone mineralization and deposition in mice with ß-thalassemia, normalizing the expression of niche factors and restoring hematopoietic stem cell (HSC) function. FGF23 may thus represent a molecular link connecting anemia, bone, and the HSC niche. This study provides a translational approach to targeting bone defects and rescuing HSC niche interactions, with potential clinical relevance for improving HSC transplantation and gene therapy for hematopoietic disorders.


Subject(s)
Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Animals , Mice , beta-Thalassemia/therapy , Bone Marrow , Bone Marrow Cells/metabolism , Hematopoietic Stem Cells/metabolism , Stem Cell Niche , Humans
8.
Bone Res ; 10(1): 48, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35851054

ABSTRACT

Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.

9.
Biomedicines ; 10(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36428495

ABSTRACT

A link between hypertension and long-term bone health has been suggested. The aim of this study was to investigate the effects of chronic angiotensin II administration on urinary calcium/phosphate excretion, bone mineral density, bone remodeling and osteoblast population in a well-established experimental model of hypertension, in the absence of possible confounding factors that could affect bone metabolism. Male Sprague-Dawley rats, divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis, n = 8); (b) Ang II+losartan (Los, 50 mg/kg/day, per os, n = 6); (c) control group (physiological saline, sub cutis, n = 9); and (d) control+losartan (n = 6) were treated for four weeks. During the experimental period, 24-hour diuresis, urinary calcium, phosphate and sodium excretion were measured prior to the treatment, at two weeks of treatment, and at the end of the treatment. Systolic blood pressure was measured by plethysmography technique (tail cuff method). At the end of the experimental protocol, the rats were euthanized and peripheral quantitative computed tomography at the proximal metaphysis and at the diaphysis of the tibiae and quantitative bone histomorphometry on distal femora were performed. Angiotensin II-dependent hypertension is associated with increased calcium and phosphate excretion. AT1 receptor blockade prevented the increase of blood pressure and phosphate excretion but did not affect the increase of calcium excretion. These changes took place without significantly affecting bone density, bone histology or osteoblast population. In conclusion, in our experimental conditions, angiotensin II-dependent hypertension gave rise to an increased urinary excretion of calcium and phosphate without affecting bone density.

10.
Transl Oncol ; 14(11): 101211, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34455373

ABSTRACT

AIM: Since its discovery Prostate Specific Antigen (PSA), also referred to as kallikrein-3 (KLK3), has been used as standard circulating biomarker for prostate cancer (PCa). However, its specificity remains not adequate and its mechanism of action still elusive. Therefore, deciphering PSA role throughout PCa-pathobiology would be relevant in improving both cancer diagnosis and outcome prediction. We investigated the possible role played by PSA on/in the tumor microenvironment and over the first steps of cancer invasion. METHODS: Fresh PCa-specimens and cell lines were used for ex-vivo/in-vitro invasion assays and assessment of prostate tissue-PSA (tPSA), type 1 collagen (COL1A1) and ß1-integrin expression. Tissue Cancer Genome Atlas (TCGA) and Decipher® datasets were considered to estimate tPSA clinical relevance. RESULTS: A more precise, inverse, correspondence between tPSA and clinical/pathological parameters was found than for circulating PSA. KLK3 combined with Gleason grade and pathologic stage, better predicted cancer-related mortality. Consistently, we demonstrated that PSA inhibits prostate extracellular-matrix (ECM) invasion by PCa cells. As for the mechanism of action, we provided novel information that PSA is able to cleave COL1A1, a main component of the ECM. Finally, ß1-integrin, a crucial COL1A1 transducing-receptor involved in tumor adhesion/invasion, resulted to be downregulated in PCa specimens with higher levels of tPSA. CONCLUSIONS: By interfering with type 1 collagen and its downstream targets, PSA may hamper adhesion and path of the cancer cells through ECM and their migration ability, thus explaining the inverse correlation highlighted between prostate tPSA levels and clinically significant disease.

11.
Biomed Res Int ; 2019: 5678548, 2019.
Article in English | MEDLINE | ID: mdl-30800672

ABSTRACT

Bone fragility and associated fracture risk are major problems in aging. Oxidative stress and mitochondrial dysfunction play a key role in the development of bone fragility. Mitochondrial dysfunction is closely associated with excessive production of reactive oxygen species (ROS). L-Carnitine (L-C), a fundamental cofactor in lipid metabolism, has an important antioxidant property. Several studies have shown how L-C enhances osteoblastic proliferation and activity. In the current study, we investigated the potential effects of L-C on mitochondrial activity, ROS production, and gene expression involved in osteoblastic differentiation using osteoblast-like cells (hOBs) derived from elderly patients. The effect of 5mM L-C treatment on mitochondrial activity and L-C antioxidant activity was studied by ROS production evaluation and cell-based antioxidant activity assay. The possible effects of L-C on hOBs differentiation were assessed by analyzing gene and protein expression by Real Time PCR and western blotting, respectively. L-C enhanced mitochondrial activity and improved antioxidant defense of hOBs. Furthermore, L-C increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Additionally, L-C induced the phosphorylation of ERK1/2 and AKT and the main kinases involved in osteoblastic differentiation and upregulated the expression of osteogenic related genes, RUNX2, osterix (OSX), bone sialoprotein (BSP), and osteopontin (OPN) as well as OPN protein synthesis, suggesting that L-C exerts a positive modulation of key osteogenic factors. In conclusion, L-C supplementation could represent a possible adjuvant in the treatment of bone fragility, counteracting oxidative phenomena and promoting bone quality maintenance.


Subject(s)
Bone Matrix/drug effects , Carnitine/pharmacology , Cell Differentiation/drug effects , Osteoblasts/drug effects , Oxidative Stress/drug effects , Aged , Aged, 80 and over , Antioxidants/metabolism , Bone Matrix/metabolism , Calcification, Physiologic/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Humans , Integrin-Binding Sialoprotein/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteopontin/metabolism , Oxidation-Reduction , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Sp7 Transcription Factor/metabolism , Up-Regulation/drug effects
12.
Nat Commun ; 10(1): 1354, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30902975

ABSTRACT

Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.


Subject(s)
Anabolic Agents/pharmacology , Bone Remodeling/drug effects , Parathyroid Hormone/pharmacology , Repressor Proteins/deficiency , Adaptor Proteins, Signal Transducing , Animals , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Differentiation/drug effects , Gene Deletion , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Organ Size/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Repressor Proteins/metabolism , Semaphorins/pharmacology , Transcription Factor AP-1/metabolism , Wnt Signaling Pathway/drug effects
13.
Bone ; 112: 136-144, 2018 07.
Article in English | MEDLINE | ID: mdl-29694926

ABSTRACT

The imbalance between osteogenesis and adipogenesis, which naturally accompanies bone marrow senescence, may contribute to the development of bone-associated diseases, like osteoporosis. In the present study, using primary human mesenchymal stromal cells (hMSCs) isolated from trabecular bone, we assessed the possible effect of GH on hMSC differentiation potential into adipocytes. GH (5 ng/ml) significantly inhibited the lipid accumulation in hMSCs cultured for 14 days in lipogenic medium. GH decreased the expression of the adipogenic genes, CCAAT/enhancer-binding protein alpha (C/EBPα) and adiponectin (ADN) as well as the expression of two lipogenesis-related enzymes, lipoprotein lipase (LPL) and acethylCoA carboxylase (ACACA). In parallel, GH induced an increase in the gene expression and protein levels of osterix (OSX) and osteoprotegerin (OPG). These effects were ascribed to enhanced Wnt signaling as GH significantly reduced Wnt inhibitors, Dickkopf 1 (DKK1) and the secreted frizzled protein 2 (SFRP2), and increased the expression of an activator of Wnt, Wnt3. Accordingly, the expression of ß-catenin and its nuclear levels were raised. Wnt involvement in GH anti-adipogenic effect was further confirmed by the silencing of ß-catenin. In silenced hMSC, both the inhibitory effect of GH on the expression of the adipogenic genes, ADN and C/EBPα and the lipogenesis enzymes LPL and ACACA, were prevented together with the stimulatory effect of GH on the osteogenic genes OSX and OPG. The present study supports the hypothesis that when GH secretion declines as in aging, the fat in the bone-marrow cavities increases and the osteogenic capacity of the MSC pool is reduced due to a decrease in Wnt signaling.


Subject(s)
Adipogenesis/drug effects , Cancellous Bone/cytology , Growth Hormone/pharmacology , Mesenchymal Stem Cells/cytology , Wnt Signaling Pathway , Adipogenesis/genetics , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Humans , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
14.
Biomed Res Int ; 2016: 8169614, 2016.
Article in English | MEDLINE | ID: mdl-27999816

ABSTRACT

Wnt signaling, a major regulator of bone formation and homeostasis, might be involved in the bone loss of osteoporotic patients and the consequent impaired response to fracture. Therefore we analyzed Wnt-related, osteogenic, and adipogenic genes in bone tissue of elderly postmenopausal women undergoing hip replacement for either femoral fracture or osteoarthritis. Bone specimens derived from the intertrochanteric region of the femurs of 25 women with fracture (F) and 29 with osteoarthritis without fracture (OA) were analyzed. Specific miRNAs were analyzed in bone and in matched blood samples. RUNX2, BGP, and OPG showed lower expression in F than in OA samples, while OSX, OPN, BSP, and RANKL were not different. Inhibitory genes of Wnt pathway were lower in F versus OA. ß-Catenin protein levels were higher in F versus OA, whereas its cotranscriptional regulator (Lef1) was lower in F group. miR-204, which targets RUNX2, and miR-130a, which inhibits PPARγ, were lower and higher, respectively, in F versus OA serum samples. The present study showed an inefficient Wnt signal transduction in F group despite higher ß-catenin protein levels, consistent with the expected overall postfracture systemic activation towards osteogenesis. This transcriptional inefficiency could contribute to the osteoporotic bone fragility.


Subject(s)
Femoral Fractures/blood , Postmenopause/blood , Wnt Signaling Pathway , Aged , Aged, 80 and over , Core Binding Factor Alpha 1 Subunit/blood , Female , Femoral Fractures/pathology , Humans , MicroRNAs/blood , Osteoarthritis/blood , Osteoarthritis/pathology , Osteoprotegerin/blood , RANK Ligand/blood , beta Catenin/blood
15.
Bone ; 55(1): 84-92, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23567159

ABSTRACT

Recent evidence demonstrated an interplay between estrogens and growth hormone (GH) at cellular level. To investigate the possible mechanism/s involved, we studied the effect of 17ß-estradiol (E2) on GH signaling pathways in primary culture of human osteoblasts (hOBs). Exposure of hOBs to E2 (10(-8) M) 60 min before GH (5 ng/ml) significantly increased phosphorylated STAT5 (P-STAT5) levels compared with GH alone. E2 per se had no effect on P-STAT5. E2-enhanced GH signaling was effective in increasing osteopontin, bone-sialoprotein, and IGF II mRNA expression to a greater extent than GH alone. We then studied the effect of E2 on the protein levels of the negative regulator of GH signaling, suppressor of cytokine signaling-2 (SOCS2). E2 (10(-11) M-10(-7) M) reduced dose-dependently SOCS2 protein levels without modifying its mRNA expression. The silencing of SOCS2 gene prevented E2 positive effect on GH induced P-STAT5 and on GH induced bone-sialoprotein and osteopontin mRNA expression. Treatment with the inhibitor of DNA-dependent RNA synthesis, actinomycin-D, did not prevent E2 induced decrease of SOCS2, thus suggesting a non-genomic effect. E2 promoted an increase in SOCS2 ubiquitination. To determine if increased ubiquitination of SOCS2 by E2 led to degradation by proteasome, hOBs were pretreated with the proteasome inhibitor MG132 (5 µM) which blocked E2 reduction of SOCS2. These findings demonstrate for the first time that E2 can amplify GH intracellular signaling in hOBs with an essential role played by the reduction of the SOCS2 mediated feedback loop.


Subject(s)
Estradiol/pharmacology , Feedback, Physiological/drug effects , Human Growth Hormone/metabolism , Osteoblasts/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling Proteins/metabolism , Aged , Aged, 80 and over , Dactinomycin/pharmacology , Gene Expression Regulation/drug effects , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Leupeptins/pharmacology , Osteoblasts/drug effects , Osteopontin/genetics , Osteopontin/metabolism , Phosphorylation/drug effects , Proteolysis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling 3 Protein , Transfection , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL